Nanolamellar magnetoelectric $\text{BaTiO}_3-\text{CoFe}_2\text{O}_4$ bicrystal

Shenqiang Ren,1 Mark Laver,2 and Manfred Wuttig1,a)

1Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742-2115, USA
2NIST Center for Neutron Research, Gaithersburg, Maryland 20899-6103, USA

(Received 30 July 2009; accepted 9 September 2009; published online 13 October 2009)

Here, we report a spontaneously formed nanolamellar $\text{BaTiO}_3-\text{CoFe}_2\text{O}_4$ bicrystal. (1$\bar{1}$0) interfaces join the BaTiO_3 and CoFe_2O_4 single crystalline periodically arranged lamellae that have a common [111] direction. The superlattice of approximately 2 nm wavelength is magnetoelectric with a frequency dependent coupling coefficient of 20 mV/Oe cm at 100 Hz. The BaTiO_3 component is a ferroelectric relaxor with a Vogel–Fulcher temperature of 311 K. The relaxor behavior gives rise to a magnetic tunability of the relative dielectric constant $(\varepsilon_r)^{-1}d\varepsilon_r/dH \approx 10^{-2}$. Since the material can be produced by standard ceramic processing methods, the discovery represents great potential for magnetoelectric devices. © 2009 American Institute of Physics. [doi:10.1063/1.3241999]

Recently, an impressive revival of studies on magnetoelectricity has occurred. Preparation of a material in which ferroelectricity and ferromagnetism coexist in a single crystal at room temperature would present a milestone for modern electronics and functional materials. However, single phase ferroelectric ferromagnets are rare,1 exhibit cryogenic ferroic transition temperatures, and have weak magnetoelectric coupling. Therefore, strain coupled composites of the two materials are currently technologically more interesting. Here, we report on a naturally grown nanoparticle bimetallic in which single crystalline lamellae of ferromagnetic CoFe_2O_4 (CFO) and ferroelectric BaTiO_3 (BTO) components are epitaxially joined. The Curie temperatures of both components lie above room temperature and the coupling constant is larger than that of any single phase material known.

The phase separation at nanoscopic length scales in chemically homogeneous complex oxide systems and the resulting multifunctionality is a research area of growing interest in both fundamental science and application oriented technology.2,3 Solid-state self-assembly is an especially intriguing approach that has been used recently to form regular morphologies on a nanoscale in a series of perovskite or spinel solid solutions, which phase separate to form pseudo-periodic chessboardlike structures with promising potential functionalities.4–6 We used this approach to improve on previous eutectoid7–9 and other10–11 syntheses of CFO/BTO composites. Avellaneda and Harshe12 already demonstrated that solidification of eutectic BTO-CFO leads to lamellar microstructures. Phase separated self-assembled CFO/BTO three-dimensional nanostructures are also formed in pulsed laser deposited films.12–15 Despite the elegance of this method, economically motivated efforts are continuing12 to synthesize magnetoelectric composites by conventional ceramic processing. However, the resulting micro or nanostructural control is generally unsatisfactory. Here, we present an approach of preparing a periodic two-dimensional lamellar BFO/CFO nanostructure that persists throughout entire crystal grains. We have discovered that the quinary system Fe-Co-Ti-Ba-O spontaneously phase separates into a superlattice of epitaxially joined ferromagnetic CFO and ferroelectric BTO lamellae. This remarkable structure is mediated by the framework of oxygen octahedra that dictates the extraordinary perfection of the CFO/BTO superlattice. Compared to recent reports on other multiferroics,13 this spontaneous phase separated perovskite-spinel system is unique in many respects; it is a naturally grown nanolamellar bicrystal with a large initial ferromagnetic susceptibility and at the same time a ferroelectric relaxor permitting large magnetoelectric tunability.

Powders of CFO/BTO (1:1 ratio) were prepared by a modified PECHINI sol-gel synthesis14 and long time (24 h) annealed at 1473 K. X-ray diffraction and electron elemental line scan characterization show two sets of features matching with the perovskite and spinel phases and consistent with the phase diagram of the quinary system Fe–Co–Ti–Ba–O.12 The corresponding nanometer scale transmission electron microscopy (TEM) images (Fig. 1) display two types of contrast at different length scales. Figure 1(a) displays the low magnification TEM contrast whose periodicity is identical to that of the nanolamellae seen in Fig. 1(b). This figure exhibits a periodic arrangement of layers with an average spacing of less than 2 nm. It will be seen that the layers consist of alternating CFO and BTO lamellae. The CFO layers contain a dark center line that is only visible at certain orientations. It represents a hexagonal stacking fault in the three unit CFO cell layer. The Rietveld analysis of the x-ray data indicates the presence of 50%CFO, 25% cubic, and 25% hexagonal BTO, i.e., a 50/50 mixture of cubic and hexagonal BTO. This apparent oddity is resolved by the stacking fault in the CFO layer; since the CFO lamella contains only three lattice units the hexagonal fault occupies 50% of its volume. The x-ray data also indicate a c/a ratio of the hexagonal portion of 2.4 in agreement with known data.15

High magnification TEM images representative of a 50%CFO/50%BTO crystals and their corresponding diffraction patterns are shown in Fig. 1(c), which shows details of the lamellar structure. The measured unit supercell is consistent with the periodicities determined from the XRD Rietveld analysis. Further confirmation of the phase separation is seen in the elemental mapping imaged at high resolution TEM. Selected area electron diffraction patterns of the superlattice taken along the (111) zone axis [see inset of Fig. 1(c)]
indicate the formation of the crystalline cubic phases. Materials studio simulations of the boundary region gave optimum matching for a simple $3a_0$ perovskite and $2a_0$ spinel one-dimensional supercell [Fig. 1(d)]. a_0 are the perovskite and spinel lattice parameters, which together represent a single period of the BTO-CFO bicrystal oriented perpendicularly to the (111) axis. This arrangement also agrees with the stoichiometry of the sample. The low and high resolution TEM images and compositional data in their entirety thus suggest that the lamellar nanostucture consists of three faulted unit cells perovskite BTO and two unit cells spinel CFO meaning, equivalently, that nanometer-scale phase separation has occurred. It is accommodated by the low energy (110) interface. The oxygen octahedra at the BTO/CFO interfaces are hexagonally arranged and some oxygen octahedra overlap, i.e., the interface is corrugated, see Fig. 1(d).

It is known that the decomposition of an amorphous or nanocrystalline CFO/BTO solid solution in a magnetic field results in a periodic nanostructure reminiscent of a spinodal decomposition into two cubic phases. The present decomposition at high temperatures likely occurs via a pseudospinodal process during which a periodic structure of CFO and BTO (Ref. 17) is formed first. The stacking fault then represents the remainder of the hexagonal phase after it is transformed to the low temperature cubic modification under constraint upon cooling. The resulting epitaxial stress in CFO is given by $\gamma_{\text{CFO}} = Y_{\text{CFO}}(e_{110} + e^{\text{epi}}_{110})$, whereas the stored epitaxial elastic energy $U_{111} = \frac{1}{2}(e_{110}^2)Y_{\text{CFO}}$, the quantity γ_{CFO} is the shear modulus of the CFO/BTO parallel composite. With the values $Y_{\text{BTO}} = 67$ GPa (Ref. 18) and $Y_{\text{CFO}} = 141.6$ GPa, $U_{111} = 4.7 \times 10^5$ J/m3. This elastic energy is significantly lower than $U_{0_{\text{BTO}}} = 2.7 \times 10^7$ J/m3 observed in thin films of the same system. The small epitaxial strain also leads to a small magnetoelastic energy density of CoFe$_2$O$_4$. $U_{\text{med}} = [(\lambda_{\text{CFO}} + 3\lambda_{111})/4]e_{110}^2 \gamma_{\text{CFO}} = 1.67 \times 10^5$ J/m3. λ represents the magnetostriction coefficients of CFO.

The ferroelectric properties of the BTO/CFO two-dimensional nanosuperlattice are equally interesting. Normally, BTO is a typical ferroelectric crystal. However, according to the temperature and frequency dependencies of the dielectric constant, e_ε, and loss factor, see Fig. 2, as part of the present composite it is a relaxor ferroelectric characterized by a Vogel–Fulcher temperature $T_{\text{VF}} = 311$ K. The dielectric response depends on the external magnetic field as shown clearly in Figs. 2(c) and 2(d). Note that, for example, the relative dielectric constant at $f = 21.5$ Hz equals 2250 but decreases to 800 if a field of 100 Oe is applied at 400 K, i.e., a remarkable magnetic tunability of e_ε. Information about the nature of the clusters, thought to cause relaxor behavior, can be extracted from the activation enthalpy of the Vogel–Fulcher relationship, $T_{\text{VF}} = kT_m - T_n$, shown in the inset of Fig. 2(d) If $T_m = T_n = 8K \cdot k$ is a magnetoelastic energy density, it follows that the extent of the cluster equals approximately one perovskite lattice constant. It may thus be argued that the relaxation occurs at the CFO/BTO interface.

The zero room temperature ferromagnetic remanence of the superlattice shown in Fig. 3(a) can be understood if it is assumed that neighboring CFO layers are antiferromagnetically coupled through their dipolar interaction. This assumption is indirectly supported by Lorentz TEM observations, which did not show any indication of domain walls in the remanent state. The initial steep rise of the magnetization is determined by the magnetization rotation in the CFO sheet plane. The initial susceptibility, x_i, will then be determined by the balance of the magnetic and effective anisotropy energy densities of CFO, $\chi_i = (I_{\text{CFO}}^2)/(2(\kappa_{\text{CFO}} + U_{\text{med}}))$. The quantities I_i and K_{med} designate the saturation magnetization.
and magnetocrystalline anisotropy energy densities, respectively. Since $K_{\text{u}}^{\text{CFO}} = 2 \times 10^5$ J m$^{-3}$ (Ref. 23) and $U_{\text{mel}} = -1.7 \times 10^5$ J m$^{-3}$ (see above) the rotational susceptibility is much larger than that of unconstrained single crystalline CFO. The approach to saturation of the sheets is governed by the total anisotropy field $\alpha_{\text{tot}} = [K_{\text{u}}^{\text{CFO}} + U_{\text{mel}} + (K_{\text{s}}^{\text{CFO}})^2] / (K_{\text{s}}^{\text{CFO}})^2$, i.e., saturation would be achieved much more gradually as the magnetization components now rotate against the demagnetization field. The normalized plot of the experimental data confirms these expectations.

The CFO/BTO nanocrystal is naturally magnetoelectric at room temperature as the components’ critical temperatures are higher than it. The magnetoelectric coupling constant of a sample consisting of randomly oriented CFO/BTO platelets displays a maximum of about 11 μC/cm2 and 1 kV/cm, respectively. The observed P_s value is higher than the reported value of polycrystalline BTO ceramics.

Periodicities with the level of perfection we report here have not, to our knowledge, ever been observed in multiferroic perovskite-spinel self-assembled nanostructures. The {111} orientation appears to provide the lowest energy interfacial configurations for perovskite-spinel systems. The coexistence of relaxor ferroelectricity and magnetic order has attracted considerable attention due to their peculiar properties and various applications. We have already shown that within one homologous solid solution, the periodic phase separated perovskite-spinel superlattice can be synthesized. By varying the compositional ratio and introducing chemical substitutes, it should be possible to improve on one or more of many technologically important functionalities in the combined perovskite and spinel families.

This work was supported by NSF (Grant No. DMR0705368), ONR-MURI (Grant No. N000140110761), ARO-MURI (Grant No. 28D1083899), UMD-MRSEC, and UMD-Nanocenter program, for permission to use its equipment.