Bringing Life to Calculus: Derivatives

By Fary Sami & Supawan King Harford Community College

Stage 1 - Desired Results

Established Goals:

Students will understand and apply differentiation rules in solving problems.

Understanding(s)/goals

Students will understand:

- a) Definitions of position, displacement, velocity and acceleration
- b) Concept of derivative as rate of change of a moving object
- c) Relation between position, velocity and acceleration

Essential Question(s):

- a) What is the average velocity of a moving object?
- b) What is the speed of a moving object at a given time?
- c) How acceleration and velocity are related and how fast is velocity changing?

Student objectives (outcomes):

Students will be able to:

- a) Estimate average velocity and velocity at a given time
- b) Relate the concept of derivative as a rate of change
- c) Calculate velocity and acceleration using derivative

Stage 2 - Assessment Evidence

Performance Tasks:

- a) Design a plan to collect data for estimating speed of a moving object
- b) Use the definition of derivative to find velocity

Stage 3 - Learning Plan

Learning Activities:

- a) Use applets to model a moving object, i.e., http://www.physicssource.org/items/detail.cfm?ID=6875 (W, H, E)
- b) Collect data (E, E2, T, O)
- c) Use MATLAB to plot the data and find equation of best fit curve for both position and velocity as a function of time (H, E, E2, O)
- d) Calculate velocity and acceleration using the model (E, R)
- e) Calculate velocity and acceleration using formulas (R, E2)
- f) Compare the results (H, E, R, E2, T, O)

W-where, what

H-hook, hold

E-equip, experience, explore

R-rethink, revise

E-evaluate

T-be tailored (personalized)

O-be organized