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Abstract
We apply a semi-supervised technique called Supervised Principal Component (SPC) to
explore the relationship between the composition of a thin film combinatorial library and
the peaks of Time-Of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) spectra
acquired from the library. SPC is first used to select a subset of the available multivariate
features (the peak intensities of the ToF-SIMS spectra) based on their association with
the outcome variable (the elemental concentration of the thin film samples). Next, using
only the selected features, SPC creates optimal linear models which map the ToF-SIMS
data onto the composition data. The models for the first two of the considered elemental
concentrations use only eight of the 55 available ToF-SIMS peaks, making interpretation
of the model much simpler than for a model which uses all 55 available peaks. The
percentage of explained variance (R2) in concentration data is in both cases about 0.80.
These results are obtained during the model validation phase, performed on test data,
which are exclusively used for this purpose. The model for the third considered element
did not produce significant results due to the poor variability of the dataset. This work
illustrates for the first time that using a multivariate analysis technique, one can establish
the relationship between ToF-SIMS measurements and stoichiometric data in a combina-
torial experiment. More generally, the described feature selection approach provides an
example of how combinatorial experiments can be useful for accelerating the
understanding of the chemical – physical behaviors under investigation.

1 Introduction

Combinatorial experiments for the discovery and optimi-
zation of new materials [1] generate data that are usually
multivariate, as arrays of variables (features) and multiple
structural and/or functional outputs are typically associat-
ed with a library of compounds. A crucial aim of combina-
torial experiments is to exploit these data for developing
reliable predictive models which are capable of identifying
materials possessing desirable physical properties. By rec-

ognizing new patterns in data, data mining strategies could
provide new hypothesis on composition-structure – proper-
ty relationships to be further validated by new experi-
ments or theoretical explanations.
One area of critical importance in data mining is feature

selection [2]. Feature selection is crucial in data mining be-
cause it helps to filter out both redundant and irrelevant
information from a multivariate dataset. The decrease in
dimensionality of a multivariate dataset obtained by fea-
ture selection not only reduces the computational expense
of the algorithm, but can also reduce the risk of designing
models which are over-fitted to data. By determining rele-
vant modeling variables, a new insight into the mechanism
governing the considered physical behavior is possible. In-
terpretability, scalability, and, possibly the accuracy of the
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resulting models are also improved. Therefore, feature se-
lection crucially contributes to the knowledge discovery
process.
In this work, we apply a technique called Supervised

Principal Component (SPC) [3, 4] to a regression problem,
namely investigating the relationship between the stoichi-
ometry mapping from a Ni�Ti�Cu composition spread li-
brary, which was synthesized by using the combinatorial
approach, and a set of peaks from Time-Of-Flight Secon-
dary Ion Mass Spectrometry (ToF-SIMS) spectra. Gener-
ally speaking, the SPC method predicts a continuous re-
sponse variable Y from a matrix X of r features measured
on each of N samples. By a cross-validation procedure,
SPC selects only those variables with the strongest com-
puted correlation with Y and sorts them based on their in-
fluence on the model. For our case, the continuous re-
sponse variable is the elemental concentration of a set of
thin film samples and the features of the multivariate anal-
ysis are the peak intensities of ToF-SIMS spectra acquired
from the same thin film samples.
ToF-SIMS provides information related to the chemical

composition of the sample and, to some extent, its molecu-
lar structure [5]. The technique is characterized by a rea-
sonably high throughput (tens of spectra per hour), good
sensitivity, and provides intrinsically spatially resolved in-
formation. Analytical routines can be automated. ToF-
SIMS can thus be used for the fast characterization of
large combinatorial libraries. Although the ToF-SIMS
technique is most commonly used for the analyses of mo-
lecular solids such as polymers, its utility is tested here for
the characterization of ternary metallic alloy compounds.
The final goal of our investigation is to ascertain wheth-

er the ToF-SIMS data relate to any crystallographic mate-
rials phases in a metal alloy [6]. In fact, while it is known
from the literature that ToF-SIMS can be used for specia-
tion and phase identification of inorganic ionic compounds
(typically catalysts [7]), a corresponding approach for met-
allic alloys has not been reported to the best of our knowl-
edge. In this framework, we initially focus on the stoichio-
metric data.

2 Materials and Methods

2.1 Material Library Synthesis and Processing

Natural thin film composition spreads of the Ni�Ti�Cu
system were deposited using an ultra high-vacuum three
gun magnetron cosputtering system with a base pressure
of 10�9 Torr (10�7 Pa) on 3-inch (76.2 mm) diameter (100)
oriented Si wafers. The films were deposited at room tem-
perature followed by an in situ annealing for 2 h in high
vacuum at temperatures in the range of 853 – 970 K. A
physical shadow mask was placed on the substrate during
deposition in order to produce a grid of lines on the wafer
for which there was no deposition. This grid divided the

composition spread wafer into 535 individual 1.75 mm�
1.75 mm squares, with each square possessing a slightly dif-
ferent composition. Figure 1a shows a schematic of the
synthesis of a ternary composition spread which covers the
relevant part of the phase diagram. Further details of the
synthesis procedure can be found in references [8, 9]. Af-
ter the deposition, the composition of each square was im-
mediately determined via Wavelength Dispersive Spec-
troscopy (WDS) in atomic percent. After the WDS mea-
surement, ToF-SIMS measurements were made on 86 of
the 535 samples. The composition distribution of samples
for which both WDS and ToF-SIMS measurements were
performed appears in Figure 1b. The results of the summa-
ry statistics separately calculated on the Ni, Ti, and Cu
concentration values of Figure 1b are reported in Table 1,
which clearly shows the poor variance of Cu concentration
data with respect to the variances of Ni and Ti concentra-
tion distributions. The effects of these differences on the
predictive power of the calculated SPC models are dis-
cussed in Section 4.

2.2 ToF-SIMS Spectra

ToF-SIMS analyses were performed in positive ions detec-
tion mode, using Arþ (10 keV) as a primary beam. Prior

172 B 2008 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim www.qcs.wiley-vch.de QSAR Comb. Sci. 27, 2008, No. 2, 171 – 178

Figure 1. a) A schematic of the deposition of a thin film com-
position library made using a 3-gun cosputtering system. The
three targets used in the deposition were Ni, Ti, and Cu. b) The
region of the ternary diagram spanned by the 86 thin film sam-
ples of the considered dataset.

Table 1. Results of the summary statistics separately calculated
on the Ni, Ti, and Cu concentration data (atomic percent) of
Figure 1b.

Ni Ti Cu

Minimum 10.9 27.8 1.1
First quartile 17.4 52.9 2.5
Mean 31.2 61.8 6.9
Third quartile 42.1 73.6 9.4
Maximum 70.4 85.2 28.8
SD 17.0 14.7 6.1
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to the analyses, the sample was pre-sputtered (using Arþ)
to remove any organic contaminants on the surface of the
film. Care was taken in order to insure the minimization of
any induced damage. The mass resolution was about 5000
at m/z¼ 48Ti. This allowed the identification of the largest
part of the peaks. For each sample, a total of 55 peaks
were present in the spectrum. The intensity of each peak
was evaluated over an interval kept constant for all the
spectra. A total of 86 spectra were recorded from the
library, covering a wide range of elemental concentra-
tions (see Table 1). Four samples were used as internal
references to evaluate any drift in the ToF-SIMS spectra
within the timeframe required to complete the analyses.
Figures 2a and 2b show an example of a positive mass

spectrum obtained from the Ni�Ti�Cu library. All of the
spectra obtained are similar to that reported in Figures 2a
and 2b with the exception that there is a variation in the
relative peak intensity from sample to sample. Along with
the pure elements related to the matrix species (Ti and Ni
mainly), molecular species such as TiNix(Oy) are present
to a large extent. Residual inorganic contaminants (Na,
Mg, Al, and Ca) can also be observed in the lower mass re-
gion. It must be noted that none of the spectra show any
peaks related to Cu, despite the fact that according to the
WDS measurements, the composition of the sampled re-
gion varies from 1 to 30%. We believe the absence of Cu
peaks is related to the sample surface oxidation state, as
the oxygen affinity is different for Cu, Ni, and Ti elements.
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Figure 2. a) and (b): A typical TOF-SIMS spectrum from the Ni�Ti�Cu library. It is divided in two successive mass ranges for read-
ability reasons.
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It has been observed that copper is present in the surface
oxide of Cu-rich Ti�Cu and Ni�Cu alloys whereas in the
surface oxide of Ti-rich or Ni-rich alloys (as in the present
case) Cu is depleted [10]. As ToF-SIMS analyzes only the
outermost (1 – 2) atomic layers of the sample, and since we
only removed a surface layer a few nanometers thick dur-
ing the pre-sputtering, it is reasonable to think that the
sampled region was still low in Cu concentration. The
presence of numerous oxide peaks is also consistent with
the fact that only the top atomic layers are sampled.

2.3 Supervised Principal Components

SPC is a method for predicting a quantitative response var-
iable Y from a set of features X1 ...Xr measured on N sam-
ples. Therefore, each feature Xj, j¼1, ..., r, is a vector of N
components. SPC is a generalization of Principal Compo-
nent Regression (PCR). In a traditional PCR analysis, the
first few Principal Components (PCs) are orthogonal line-
ar combinations of the features, which account for the
largest variances in the dataset. However, these new coor-
dinates may not be highly correlated with the outcome var-
iable of interest. SPC therefore computes the standardized
regression coefficients that measure the correlation of
each original feature to the response variable Y. It then se-
lects only those features whose regression coefficient value
is greater than a threshold value, which is determined by a
cross-validation procedure. A principal component analy-
sis is then carried out exploiting only the selected features
and the first PCs (up to three) are used in a linear regres-
sion model to predict the response variable Y. Figure 3
shows the flow diagram for the SPC analysis. An exhaus-
tive discussion of the method can be found in Ref. [3]. We
used SPCs provided by the superpc package of R (version
2.3.0) [11, 12].
For the analysis reported in this paper, the considered

features (X1 ...Xr) are the 55 peaks of the ToF-SIMS spec-
tra acquired from N¼86 ternary alloys in the combinatori-
al library. Each spectrum was normalized to its total counts
and, following the procedure outlined in Ref. [3], the fea-
tures were centered to have a mean value of zero. Each
compound is characterized by unique values of Ni, Ti, and
Cu atomic concentrations. In our analysis, each elemental
concentration represents a different outcome variable Y.
In order to obtain an estimate of the generalization error
of the model, the dataset was randomly partitioned into a
training set of 43 alloys and a test set of the remaining 43
alloys. The SPC method uses cross-validation to estimate
the best subset of features for the linear regression
through estimation of the best threshold value. We used
three-fold cross-validation. The training set is therefore di-
vided into three mutually exclusive subsets of approxi-
mately equal size. Each model is trained on 2/3 of the
training data, and then SPC computes the log-likelihood
ratio test statistic on the remaining 1/3. The results are
averaged over three runs. We repeated this process ten

times choosing the best provided value. The independent
test set is separately used for final validation, by consider-
ing both the log-likelihood ratio statistic and the p value
provided by the significance test of the regression coeffi-
cient. When similar results were obtained for different
threshold values, we always considered the threshold se-
lecting the minimum set of variables. We considered only
the first SPC, since all of the corresponding models were
always highly significant.

3 Results

The procedure described in Section 2.3 was applied to
build separate linear regression models matching the ToF-
SIMS features to each of the Ni, Ti, and Cu concentrations.
The results of the feature selection for Ni concentration
are given in Table 2. The procedure selected eight of the
55 ToF-SIMS peaks, which are reported in order of de-
creasing importance score. The importance score is de-
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Figure 3. The flowchart for the SPC analysis.

Full Papers Rossana DellJAnna et al.

www.qcs.wiley-vch.de


fined in Ref. [3] as the inner product between each feature
Xj and the first SPC u1:

impj¼hXj, u1i, j¼1, ..., r

The features with larger absolute values of importance
contribute most to the model of Y. Table 2 also reports the
results of the application of the linear regression model on
the test data. In particular, it shows the regression coeffi-
cient, m, and the p value of the associated t-test for the
null hypothesis of a zero slope. The value of the adjusted
R2, i.e., the percentage of variance reduction, is also given
as a measure of the goodness of fit.
Similarly, Table 3 displays the eight ToF-SIMS peaks se-

lected by the SPC method for use in the model of Ti con-
centration. They are reported in order of decreasing im-
portance score, together with the results of the performed
linear regression on the test set. Figures 4 and 5 illustrate
predicted Ni and Ti concentration values, calculated on
the test set by the cross-validated regression models, versus
correspondingly measured concentrations. The fitted lines
are also reported.
For a further validation of these results, we checked the

performance of the SPC procedure on the same dataset
but with randomized assignments of the Ni and Ti concen-
tration values to ToF-SIMS spectra. We also carried out
another check by randomly assigning in each spectrum the
measured peak intensities to the mass list. As expected, in
all these cases no significant models were found, both for
Ni concentrations and Ti concentrations prediction.

In contrast to what was obtained for Ni and Ti concen-
trations, the linear models found when considering Cu
concentration as the outcome variable do not sufficiently
explain the variance in Y data. As discussed in Section 2.2,
no signals related to Cu are present in the TOF-SIMS
spectra, even from the samples with the highest Cu con-
tent. However, the Cu concentration can be immediately
calculated using only Ni and Ti values, as the sum of these
three concentration values is always 100%. Therefore,
since we separately obtained significant models for Ni and
Ti concentrations, it is reasonable to look for linear regres-
sion models matching ToF-SIMS features to Cu concentra-
tions, even though the ToF-SIMS spectra do not indicate
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Table 2. Results of SPC analysis for the modeling of Ni concen-
tration. The linear regression statistics are the regression coeffi-
cient, m, with accompanying p value of the t-test for evaluating
if m value is significantly different from zero. The p value repre-
sents the probability of finding a slope that is as large as or larg-
er than the observed slope, under the null hypothesis that the
true slope is 0. The adjusted R2 value denotes the sample size
dependent percentage of variation in the dependent variable
(the Ni concentration) accounted for by the independent predic-
tor variables (the selected ToF-SIMS peaks). The model is built
using only eight of the available 55 ToF-SIMS peaks. They are
here given sorted by decreasing absolute value of importance
score.

Nickel concentration model

Linear Fit statistics Selected
features

Importance
score

Ni60Ni 131750
TiNi2 130813

m¼0.78 TiNi60Ni 119254
p<2�10�16 TiNiO 114697
R2¼0.81 Ti2

60NiO 95116
46TiTiO2 83278
49TiTiNiO 53398
58Ni2H 20160

Figure 4. Scatter plot of predicted Ni concentration values ver-
sus measured concentrations with fitted line.

Figure 5. Scatter plot of predicted Ti concentration values ver-
sus measured concentrations with fitted line.
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that Cu is present. The negative result obtained is dis-
cussed in the next Section.

4 Discussion

We applied the SPC method to find the optimal reduced
sets of ToF-SIMS spectra peaks for building linear regres-
sion models able to fit the composition information of a
Ni�Ti�Cu combinatorial library. The fit results for Ni and
Ti concentrations are separately reported in Tables 2 and
3. In both cases, the regression coefficient m is significantly
different from zero and the percentage of variance in the
concentration explained by the model is definitely high.
SPC builds the models by selecting in both cases eight of
the 55 ToF-SIMS peaks, which are reported in the same ta-
bles. The significant decrease in dimensionality of the mul-
tivariate dataset we obtained by feature selection reduces
the computational expense of the algorithm. Therefore,
the model scalability is improved. It also reduces the risk
of designing models which are over-fitted to data. Most of
all, by determining relevant modeling variables, the inter-
pretability of these resulting models is facilitated, as we
will discuss hereinafter. Therefore, the feature selection
approach we applied surely helps to follow a more effec-
tive knowledge discovery process.
A significant result of our analysis is that for both Ni

and Ti concentration cases the optimal predictive model is
obtained by only considering the heaviest molecular spe-
cies (see Figures 2a and 2b), except for the presence of the
oxygen in Table 3. Noting that ToF-SIMS measurements
provide a fragmentation pattern consisting of both ele-
mental and molecular species, we can conclude that the
model built with the selected features indicates a reduced
importance of the elemental species for the modeling of
concentration. This is interesting because these signals are
those usually singularly considered in univariate analysis
performed for the same purpose. In addition, the two mod-
els are consistent, as the selected features for modeling the
Ni concentration and those for Ti concentration are nearly
identical, with the only exception being that the TiNi60Ni

peak in the Ni concentration model is replaced by the O
peak in the Ti concentration model. It is interesting to
note that both lists contain molecular fragments which do
not contain the element whose concentration is being
modeled. For example, the list of selected features for Ni
contains 46TiTiO2 and the list for Ti contains Ni60Ni and
58Ni2H. This is not surprising. The high value of impor-
tance of these features is a result of the absence of a Cu
signal in the ToF-SIMS spectra and the fact that the sum
of the concentrations of Ni, Ti, and Cu must add up to
100%. These constraints imply that if a feature containing
Ni is strongly correlated to Ni concentration, it will also be
correlated to Ti concentration, and vice versa. Since the
SPC method uncovers groups of peaks which coexpress
the elemental concentration considered [3], it includes
both features which are strongly correlated and features
which are indirectly strongly correlated to the concentra-
tion considered.
The feature selection algorithm of the SPC method cor-

rectly discards Al, Ca, and alkali peaks, the occurrence of
which is related to contaminants. A consistent part of se-
lected features is represented by oxides, which of course
reflect the surface oxidation state. In this perspective, the
O peak of Table 3, selected for prediction of Ti concentra-
tion values, tells us that it comes essentially from the sam-
ples and not from impurities. In addition, it should be
mainly related to Ti oxidation. This is a simple example of
how feature selection in combinatorial data analysis can
contribute to the knowledge discovery process.
As written in Section 3, the linear models provided by

SPC do not satisfyingly explain the variance in Cu concen-
tration data (best adjusted R2¼0.42), even though the ob-
tained slope coefficients are significantly different from
zero (m¼0.43, p¼1.5�10�6). Therefore, in order to test if
another method was more effective than SPC in finding
correlations between the Cu concentrations and the ToF-
SIMS data, we also decided to apply the Partial Least
Squares (PLS) technique to the same problem. We carried
out the PLS calculation on the same training and test sets
used for SPC analysis. PLS is a supervised technique that
builds predictive models by constructing weighted linear
combinations of the input variables that have the maximal
covariance with the output (see for instance Ref. [13]).
One important difference between PLS and SPC is that
PLS uses all of the dataset features while SPC uses only a
subset of the features. We found that even the PLS model
is definitely not able to account for the variance in Cu con-
centration in terms of all ToF-SIMS peak intensities (best
adjusted R2¼0.51, m¼0.53, p¼5.5�10�8). In contrast,
PLS models mapping Tof-SIMS spectral data onto Ni and
Ti concentration are quite significant. Thus, the PLS re-
sults confirm that the unsatisfactory results in modeling
the Cu concentration using the SPC method are mainly
due to the poor variability of the training set. As illustrat-
ed in Table 1, the range of concentration values for Cu is
quite narrow compared to the range of concentration val-
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Table 3. Results of SPC analysis for the modeling of Ti concen-
tration. See Table 2 for description.

Titanium concentration model

Linear fit statistics Selected features Importance score

Ni60Ni 124342
TiNi2 122887

m¼0.79
p¼2.5�10�16

R2¼0.80

TiNiO 109865
Ti2

60NiO 91007
46TiTiO2 80554
O 75995
49TiTiNiO 50494
58Ni2H 18633
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ues for Ni and Ti. This leads us to the conclusion that there
is not enough diversity in the examples provided during
the learning phase to attain an accurate model for Cu con-
centration. Therefore, the poor content of Cu (up to 30%)
causes the absence of Cu signal in ToF-SIMS spectra,
while the poor variability of Cu content (variability of Cu
values in the 1 – 30% range) causes the Cu concentration
model to be not significant. The relationship between the
Cu concentration and ToF-SIMS data should therefore be
explored on a different dataset. In contrast to the model
for Cu concentration, the SPC model accuracy (evaluated
by three-fold cross-validation on the training set and fur-
ther assessed on the test set) for Ni and Ti concentration
regression was very good. In any case, a further assessment
on a larger, independent dataset should be carried out to
confirm the reliability of the model.
To better depict SPC performances and merit, a more

exhaustive comparison with other regression approaches
(including PLS) should be accomplished. This investiga-
tion is beyond the scope of this paper and was already car-
ried out by the developers of SPC [3]. Here we only men-
tion that we compared SPC with both PLS and PCR tech-
nique.

In our comparison of SPC and PLS results, the best
models provided by PLS to map ToF-SIMS spectral data
onto Ni and Ti concentration data were built from more
than three latent variables and performed better than SPC
models (six latent variables for Ni concentration model,
R2¼0.91; four latent variables for Ti-concentration model,
R2¼0.88). However, the goal of this article is not to pro-
mote the SPC method as an alternative to PLS approach,
but rather to stress the possibility of building a predictive
model which exploits a minimum set of features. In this
sense, SPC surely helps to follow a more effective knowl-
edge discovery process with respect to PLS technique. We
already described the effects of the SPC feature selection
approach, here we want to stress that the good SPC perfor-
mance is guaranteed in our cases by using models built on
only eight instead of 55 features. SPC also provides the im-
portance score of these predictor variables. On the contra-
ry, PLS does not perform an initial thresholding of fea-
tures. PLS is a good regression method, but its drawback is
that a PLS model could be difficult to interpret, as each la-
tent variable involves a linear combination of all features.
Figure 6 is illustrative of this concept. As an example, we
consider the best cross-validated predictive model (R2¼
0.88) for Ti concentration values that we obtained by PLS.
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Figure 6. The four loading plots of the most accurate PLS model for Ti concentration prediction. Each plot is associated to a differ-
ent latent variable (LV) and shows the relationships among the predictor variables producing that new coordinate. The X-axis reports
the 55 considered features. For readability reasons they are numbered following their position in the ToF-SIMS spectrum (see Figures
2a and 2b). Each plot reports the corresponding LV and the percentages of the simultaneously explained variances of X and Y.
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It exploits four latent variables. Therefore, the predictor
variables interpretation proceeds through the parallel
analysis of the four loading plots reported in Figure 6, with
particular attention for the first plots, which most contrib-
ute to the overall percentage of captured covariance. This
is surely a difficult task that probably can not be complete-
ly accomplished. Therefore, when there is the need to re-
duce the number of features in order to gain insight into
the mechanism governing the behavior of some physical
property, the usefulness of PLS is limited and SPC can in-
stead provide interesting results.
In PCR technique [14], instead of regressing the system

property (e.g. concentrations in our case) on the original
measured variables (ToF-SIMS peak intensities in our
case), the property is regressed on the PC scores of the
measured variables, which are orthogonal and, therefore,
inherently uncorrelated. We decided to build models
based on the first PC to directly compare them with SPC
results and therefore analyze the strength of our feature
selection approach. We obtained for Ni concentration data
R2¼0.81 and for Ti-concentration data R2¼0.76. Even in
this case the Cu concentration model was not predictive
enough (R2¼0.21). The accuracy of SPC model for Ni
data was similar and that for Ti data was slightly better.
Therefore, this comparison confirms that the feature selec-
tion approach performed by SPC analysis was effective in
filtering out both redundant and irrelevant information, as
SPC models involve eight instead of the 55 features ex-
ploited in PCR models. In addition, the higher number of
features of PCR models causes even in this case their diffi-
cult interpretation.

5 Conclusions

In this work, we applied the SPC method in order to map
the relationship between the composition information of a
Ni�Ti�Cu thin film library and the ToF-SIMS spectra ac-
quired from the library. The possibility of performing uni-
variate analysis relating the intensity of a single peak of
ToF-SIMS spectrum to stoichiometric data is well under-
stood. However, to the best of our knowledge this is the
first study in which the correlation is assessed by a multi-
variate approach analyzing ToF-SIMS spectra taken from
a combinatorial library. In the context of combinatorial
data analysis, the selection of a reduced number of predic-
tor variables allows us to build more understandable mod-
els, thereby accelerating the knowledge discovery process.

In the future, we plan to apply the same SPC approach in
order to predict other physical properties.
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