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In this work we apply a technique called non-negative matrix factorization �NMF� to the problem
of analyzing hundreds of x-ray microdiffraction ��XRD� patterns from a combinatorial materials
library. An in-house scanning x-ray microdiffractometer is used to obtain �XRD patterns from 273
different compositions on a single composition spread library. NMF is then used to identify the
unique �XRD patterns present in the system and quantify the contribution of each of these basis
patterns to each experimental diffraction pattern. As a baseline, the results of NMF are compared to
the results obtained using principle component analysis. The basis patterns found using NMF are
then compared to reference patterns from a database of known structural patterns in order to identify
known structures. As an example system, we explore a region of the Fe–Ga–Pd ternary system. The
use of NMF in this case reduces the arduous task of analyzing hundreds of �XRD patterns to the
much smaller task of identifying only nine �XRD patterns. © 2009 American Institute of Physics.
�doi:10.1063/1.3216809�

I. INTRODUCTION

The combinatorial approach has been used to discover
new materials phases as well as perform rapid mapping of
composition-structure-property relationships in complex ma-
terials systems.1–3 Using thin-film composition spread librar-
ies, large fractions of compositional phase diagrams can be
mapped out with a high density of data points on a single
wafer.4–7 Mapping phase diagrams is central to obtaining
comprehensive pictures of materials systems, and mapping
active physical properties as a function of composition is an
integral part of understanding the underlying physical
mechanism of the properties.7–9 Thin-film materials can often
display properties with deviation from bulk samples, but it
has been shown in many systems that one can indeed obtain
compositional trends that closely resemble or mirror those of
bulk counterparts.7,10

The increasing popularity of the combinatorial approach
to material science has resulted in a need to develop new
techniques that can be used to analyze large amounts of data
in parallel. One type of data that presents a particularly large
challenge is x-ray microdiffraction ��XRD� data. It is pos-
sible to analyze each spectrum individually, but this process
is very tedious and time consuming. In order to reduce the
difficulty of this task, we are in the process of developing
tools and techniques that can be used to analyze many dif-
fraction spectra at once, instead of the traditional one at a
time approach.

In previous work, we have presented our techniques for
the visualization of diffraction data from ternary composition
libraries11 as well as our work using clustering analysis to
sort spectra into discrete groups.12 In this work, we apply a
technique called non-negative matrix factorization �NMF� to
the problem of identifying the unique diffraction patterns

present in a set of �XRD spectra, as well as quantifying the
contribution of those patterns to each experimental spectrum.
As an example system, we look at a region of the Fe–Ga–Pd
ternary system.

II. EXPERIMENTAL

Our interest in the Fe–Ga–Pd ternary system stems from
the fact that the Fe–Ga and Fe–Pd binary phase diagrams
contain compositions with unusual magnetic actuator prop-
erties. Fe–Ga is a well-known material system exhibiting
large magnetostriction for Ga content between 20 and 30
at. %. The origin of this property is attributed to the com-
plexity of the Fe–Ga binary phase diagram in this region.13

Fe70Pd30 is a ferromagnetic shape memory alloy14 whose
martensitic transition is associated with a magnetic field-
induced strain of about 10 000 ppm.15 Fortunately, Ga and
Pd both form solid solutions when they are substituted into
the Fe lattice. This means that they could possibly be substi-
tuted into the Fe lattice without disturbing the original crystal
structure.

Natural thin-film composition spreads of the Fe–Ga–Pd
system were deposited at room temperature using an
ultrahigh-vacuum three gun magnetron cosputtering system
with a base pressure of 10−9 Torr �10−7 Pa� on 3 in. �76.2
mm� diameter �100� oriented Si wafer. The samples were
then postannealed at 650 °C for 2 h in our sputtering cham-
ber. The base pressure during annealing was 10−8 Torr. After
the deposition, the composition of each sample on the wafer
was immediately determined via wavelength dispersive spec-
troscopy in atomic percent. This measurement can determine
the percent fraction of each atom contained at each point on
the wafer to better than 1%. Figure 1 shows the schematic
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procedure for the synthesis of a ternary composition spread
that covers the relevant part of the phase diagram.

�XRD of the fabricated films was performed using the
�-scan mode of a D8 DISCOVER16 for combinatorial
screening by Bruker-AXS. The diffractometer was equipped
with a HI-STAR two-dimensional detector, which captures
data for a fixed range of 2� and � at once. The composition
spread wafer contained a grid of 535 individual 1.75 mm2

squares with continuously changing composition. However,
�XRD was performed for only 273 of the 535 squares due to
time constraints. We used an x-ray beam spot size of 1 mm
diameter. Once the data acquisition was complete, the raw
detector images were integrated to obtain 2� angles and peak
intensities using the D8 GADDS program and a script to auto-
mate the process.

Since there is some extraneous information in the �XRD
spectra �e.g., substrate peaks and background signal� some
preprocessing was done on the data before it was analyzed.
In particular, background subtraction, cropping, and normal-
ization were performed. Background subtraction was done
by fitting and subtracting a piecewise polynomial from the
data on a spectrum by spectrum basis. After background sub-
traction, the full measured 2� range was cropped down to the
minimum range such that all of the detected �XRD peaks
from all the samples �but not from the substrate� were con-
tained in the spectra. For these Fe–Ga–Pd samples, we found
that this range was from 37° to 50°. The spectra were then
normalized such that the largest intensity in any given spec-
trum was unity.

III. NMF OF �XRD DATA

NMF is a relatively new technique, which has been ap-
plied to problems in several fields. NMF has been used to
perform image segmentation,17 document clustering,18 and
spectral unmixing of satellite reflectance data,19 among other
applications. To the best of the authors’ knowledge, this is
the first time that it has been applied to �XRD data.

The basic idea of NMF is to deconvolve a large number
of non-negative spectral patterns into a smaller number of

non-negative basis patterns. The experimental patterns can
then be described as a weighted superposition of the decon-
volved basis patterns.

We have two main reasons why we have chosen to use
NMF over other multivariate techniques. First, since NMF
describes experimental spectra as a superposition of basis
patterns, it can easily handle diffraction patterns that result
from mixtures of different crystal structures. This makes
NMF a good choice when compared to techniques that sort
patterns into discreet groups. NMF therefore represents a sig-
nificant improvement over our previous work using hierar-
chical clustering analysis.12 Second, NMF produces basis
patterns that can be directly interpreted as diffraction pat-
terns. This makes NMF a more suitable technique when deal-
ing with �XRD data in comparison to principal component
analysis �PCA� since PCA produces basis patterns that con-
tain negative values.

In order to perform the factorization, the �XRD data
were arranged into an m-by-n matrix, Y, where m is the
number of compositions for which �XRD patterns were
measured �m=273 in this case� and n is the number of angles
at which the diffraction intensity was recorded. In this case,
the diffraction intensity was measured every 0.02° over the
2� range from 37° to 50°, so n=651. NMF was then used to
find an approximate factorization of Y into the product of
two smaller matrices, A and X. The matrices A and X are
constrained such that they may only contain non-negative
values. Any noise in the experimental data or errors in the
factorization get accounted for by an error matrix, E, which
may contain negative values.

Y = AX + E, where Aij � 0 and Xij � 0.

The size of matrix A is m-by-r, the size of matrix X is r-by-n,
and the size of matrix E is m-by-n, where r is the rank of the
factorization. The rank of the factorization corresponds to the
number of basis patterns that are to be extracted from the
experimental data, and is chosen by the user of the algo-
rithm. Choosing the correct value for r requires some con-
sideration and is discussed below in the comparison of NMF
to PCA. For the �XRD data set presented here, we found
that a rank nine factorization produced a good deconvolution
of the experimental diffraction patterns.

Each row of the matrix X contains a basis pattern. Each
basis pattern contains a set of peaks that tend to appear to-
gether in the experimental data. After the factorization is
completed, the basis patterns are normalized such that the
largest value in each spectrum is unity. The content of the
matrix X is presented in Fig. 2.

Each row of the matrix A contains the weights, or linear
mixing coefficients, of the basis patterns for a particular ex-
perimental pattern. Since the basis patterns are normalized to
unit intensity, each matrix element in A corresponds to the
intensity of a given basis pattern for a particular experimen-
tal pattern. In Figs. 3 and 5, the relative weights of the basis
patterns for a given composition are represented using pie
charts. The size of each piece of a pie chart corresponds to
the amount of each basis pattern present in a given sample.

Each row of the matrix AX contains a deflated version of
an experimental spectrum. The spectra are said to be deflated

FIG. 1. �Color online� Schematic for the deposition of a thin-film composi-
tion library in the Fe–Ga–Pd ternary metallic system. �a� Three sputtering
guns in a nonconfocal geometry deposit a continuous gradient of composi-
tions onto a gridded, 3 in. Si wafer. �b� The resulting compositions on the
ternary diagram as measured by wavelength dispersive spectroscopy.
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because there is typically a much smaller number of degrees
of freedom in the matrix AX than there is in the matrix Y.
The number of degrees of freedom in the matrix AX is the
number of matrix elements in A plus the number of matrix
elements in X. In contrast, the number of degrees of freedom
in Y is the number of matrix elements in Y. For example, in
the data set explored here, there are 177 723 matrix elements
in Y, but only 8316 matrix elements for a rank nine factor-
ization AX. Thus, the dimensionality of the parameter space
for the deflated matrix �AX� is less than 5% of that for the
experimental data. Ideally, the only difference between the
experimental spectra and the deflated spectra should be that
the deflated spectra contain much less noise.

Each row of the matrix E contains a residual spectrum,

which is the difference between an experimental pattern and
the corresponding deflated pattern. Ideally, after the factor-
ization, the residual spectra should only contain noise.

Finding the best solution for A and X is equivalent to
minimizing the norm of the error matrix. The problem to be
solved by the NMF algorithm can thus be stated as

find A and X such that

�E� = �Y − AX� is a minimum.

There are several possible ways of calculating the norm of E
and also several possible NMF algorithms for finding A and
X such that �E� is minimized. In this work, we calculated the
norm of E using the squared Frobenius norm, which is sim-
ply the sum of the squared matrix elements. An exhaustive
discussion of NMF algorithms is beyond the scope of this
work and can be found elsewhere.20 For our work, suffice to
say that we used the regularized alternating least-squares
algorithm21 for finding A and X. The software used to per-
form the factorization was NMFLAB,22 which is a third party
toolbox for MATLAB.

IV. COMPARISON OF NMF TO PCA

In order to validate the results of the NMF, we must be
assured that the NMF algorithm has converged to a global
minimum of �E�, and not merely a local minimum or station-
ary point. Unfortunately, one of the current limitations of
NMF is that convergence to a global minimum is not guar-
anteed. In order to show that the factorization has converged
to very near the global minimum, and in order to choose the
correct rank of the factorization, we compare the results of
NMF to those of PCA.

The relevant feature of PCA for this work is that for a
given rank, PCA finds a matrix factorization that produces
the global minimum of the squared Frobenius norm of the
error matrix. That is to say, when representing experimental
spectra as a linear superposition of basis patterns, PCA pro-
duces the best possible approximation to the data using a
given number of basis patterns. Since PCA produces a fac-
torization with the minimum possible amount of error, we
can assess the quality of the factorization produced using
NMF by comparing the amount of information captured by
NMF to the amount of information captured using PCA.

It is worth noting that even though PCA produces a ma-
trix factorization that minimizes the Frobenius norm of the
error matrix, it does not produce basis patterns that are physi-
cally realizable diffraction patterns. Specifically, the basis
patterns produced using PCA contain negative values and are
all orthogonal to each other. This is not consistent with the
solution we are looking for since the diffraction patterns of a
set of crystal structures will only contain positive values and
are very unlikely to be orthogonal. For this reason, the basis
patterns produced by PCA do not form a useful deconvolu-
tion for our work. In contrast, the basis patterns produced
using NMF contain only non-negative values and are not
constrained to be orthogonal. Thus, they are ideally suited
for the task of deconvolving diffraction patterns.

A comparison of the amount of experimental data ac-
counted for as a function of the number of basis patterns

FIG. 2. �Color online� The nine basis patterns found using NMF. The pat-
terns are color coded by structural phase. Peaks identified as possible
matches to reference patterns are labeled. The spectra are offset vertically
for visibility.

FIG. 3. �Color online� Part �a� shows the weights of the basis patterns which
are present the sample with nominal composition of Fe46Pd26Ga28. Part �b�
shows the experimental �XRD pattern for this sample. Part �c� shows the
weighted basis patterns, which provide a deconvolution of the experimental
pattern.
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using both PCA and NMF is presented in Fig. 4. The amount
of error in the factorization is found by calculating the ratio
of the absolute area of all of the residual spectra to the area
of all of the experimental spectra,
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The first point to observe in Fig. 4 is that below about 20
basis patterns, the percent of data explained using NMF is
very close to the amount of data explained using PCA. Thus,
in this low-rank region we can be satisfied that the employed
NMF algorithm has converged to a point that is very near the
global minimum of the norm of the error matrix. Above 20
basis patterns, the amount of data explained by NMF begins
to diverge from the amount explained by PCA, and can even
decrease compared to lower rank factorizations. We believe
that this decrease is due to the NMF algorithm falling into a
local minimum of the norm of the error matrix instead of
converging to the global minimum.

There are techniques available which can reduce the ten-
dency to fall into local minima, although none guarantees
that the minima are avoided altogether. The most common
approach is to choose many different random initializations
for A and X, run NMF using each one, and then keep the best
result.20 Another possibility is to pass the results of one NMF
algorithm to another algorithm in the hope that they do not
both get stuck in the same minimum.23 Yet a third approach
is to choose the initialization of A and X such that they are
already near the global minimum.24,25 For our case, we are
most interested in the low rank factorizations where the local
minima did not pose a problem. As a result, we have not
focused here on trying to avoid these local minima.

In order to produce an accurate factorization of the ex-
perimental data, the correct rank of the factorization must be
determined. Determining the correct rank of the factorization
corresponds to determining the number of unique patterns
that exist in the data. Choosing a rank that is too small will
result in basis patterns that are composed of mixtures of pure
phase patterns. Choosing a rank that is too large may result

in the pattern from a single structural phase being broken up
into several basis patterns, each of which contains a subset of
the reflections from that structure. Ideally, by choosing the
rank of the factorization to match the number of crystal
structures, each basis pattern should represent the diffraction
pattern of a single crystal structure. We note that there are
some cases where each basis pattern will not represent the
diffraction pattern of a single crystal structure. These cases
are discussed later in the “limitations and future work” sec-
tion.

Using Fig. 4 we can estimate how many patterns are
needed to describe the data. We do this by determining the
point where increasing the number of basis patterns does not
increase the amount of data explained by very much. In the
case of the Fe–Ga–Pd data set, this occurs at about nine basis
patterns for both PCA and NMF.

V. RESULTS FOR Fe–Ga–Pd COMPOSITION SPREAD

In Fig. 2, one can see the nine basis patterns found using
NMF for this system. There are a couple of features of these
patterns that are worth discussing. The first is that there are
several patterns that are only present as mixtures in the ex-
perimental data, but show up as separate patterns in the ex-
tracted basis patterns. This shows that NMF can identify the
correct basis patterns even when there are no endmembers
present in the data set. The second feature to note is that in
the case of bcc Fe, the NMF algorithm extracts several dif-
ferent patterns that correspond to the same structure but
where the position of the peak has shifted. This is one limi-
tation of the NMF algorithm. Since the algorithm has no way
of accounting for peak shifts, it identifies each shifted pattern
as a new pattern. In this case, it is up to the materials scien-
tist to identify that the shifted patterns do not correspond to
several different structures, but in fact correspond to a single
structure that exhibits a change in lattice parameters as a
function of chemical composition.

In order to identify the structural phases corresponding
to the basis patterns found using NMF, the basis patterns
were compared to a set of reference spectra calculated from
the crystallographic databases available at NIST. In particu-
lar, we used the Inorganic Crystal Structure Database
�ICSD�26 and the NIST Structural Database.27 If the compo-
sition of the reference pattern was within �or very near� the
composition space where a given basis pattern was prevalent,
and the peaks were separated by less than 0.4°, then we
considered this to be a match. We note that several of the
peaks present in the basis patterns produced by NMF contain
unidentified peaks. The main reason that not all of the dif-
fraction peaks were identified using this method is that there
are a limited number of reference patterns available for com-
parison in the crystallographic databases. The number of
available reference patterns is especially sparse as one moves
away from the binary edges of the ternary diagram.

Figure 5 presents a ternary diagram in which the weights
of the NMF basis patterns for each composition have been
represented as pie charts. Since the basis patterns found us-
ing NMF correspond to structural phases, this diagram gives

FIG. 4. �Color online� The graph above shows the percent of experimental
data that can be represented using a given number of basis patterns. The
fraction of the data accounted for using NMF is very near that accounted for
using PCA, implying that the factorization produced by NMF is valid. The
reason why 100% of the data is not accounted for by the factorizations is
that there is noise in the experimental data. In this case, noise accounts for
about 20% of the experimental data.

103902-4 Long et al. Rev. Sci. Instrum. 80, 103902 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://rsi.aip.org/rsi/copyright.jsp



us a quantitative distribution of structural phases as a func-
tion of composition, including the existence of multiphase
regions.

Although the full ternary phase diagram of this system is
not available for comparison, the projection of the identified
distributions to the two binary �Fe–Ga and Fe–Pd� systems
matches the known phase diagrams reasonably well. Accord-
ing to the published equilibrium phase diagrams, in the
Fe–Ga system,28 starting from the pure Fe end, the �-Fe
phase persists up to about 80% Fe, beyond which various
mixture regions containing the Fe–Ga L12 phase stretches up
to about 50% Fe. The L12 phase has a fcc structure, which in
our study was correctly identified as being isostructural to
fcc Fe. In the Fe–Pd system,29 a mixture of �-Fe and
Fe50Pd50 is known to extend from 100% Fe to about 50% Fe.
It is expected that this region would “appear” as mainly
�-Fe. In our study, we find that at approximately Fe65Pd35,
the dominant phase switches from �-Fe to fcc Fe65Pd35,
which stretches beyond 50% Fe. Our analysis has identified
this region �starting at the correct composition� as the fcc
Fe65Pd35, which we believe is a quenched phase.

VI. EXISTING PROBLEMS AND FUTURE WORK

The ultimate goal of our efforts is to reach a point where
the analysis of hundreds of �XRD spectra automatically
identifies all of the pure phases present in a system and quan-
tifies the percent of each phase present for each composition.
The work presented here represents significant progress to-
ward this goal, but there are still significant problems left to
overcome. Some of these problems are inherent in the use of
thin films, while others are particular to the analysis of
�XRD data using NMF.

One of the problems one faces when attempting to do
structure identification of thin films is that it may simply not
be possible to precisely identify all the lattice parameters,
and thus, the exact structure of the material. In principle, in
order to completely determine the lattice parameters, one
must measure the intensity of all x-ray reflections, as in pow-
der diffraction. The films under study here are often at least
textured, and are sometimes even epitaxially grown. This
texturing reduces the number of reflections to only the ones
from the preferred orientations. It is also possible that the
film may exhibit different preferred orientations at different
sites, resulting in different sets of reflections for the same
structure. As a partial solution to the problem of textured
films, it is sometimes possible to obtain some additional in-
formation about textured samples by tilting the wafer. Other
problems include formation of “spurious” phases such as sil-
icides, as observed here. There could also be formation of
metastable phases that are unique to the film structures and
cannot be synthesized in bulk form.

In addition to the difficulties of working with thin films,
there are also problems that are particular to the analysis of
�XRD data using NMF. One of the difficulties of quantify-
ing the amount of each phase present in a sample is that the
structure factor can be different for each pattern. This results
in a difference in the brightness of different patterns. Thus
the relative intensities of the patterns present in a sample
provided by the NMF weights matrix �and presented in Fig.
5� cannot be directly compared to the volume fraction of the
structures present in a sample. It is possible to get around
this problem by renormalizing the weights of each basis pat-
tern by the intensity of each pure phase. However this is only
possible if for each pure phase there is at least one sample
that is not a mixture. A second difficulty that is not addressed
by NMF is peak shifting due to changing lattice constants. If
there are a number of diffraction patterns across which there
is a large shift in the position of a peak, then it will be more
profitable for the algorithm to “spend” its basis patterns de-
scribing this peak shift, instead of identifying other structural
phases. The best that can be achieved in the case of peak
shifts using NMF is the identification of several patterns,
each corresponding to a different shift. Yet a third weakness
is that diffraction patterns that correspond to different pre-
ferred orientations of the same structure might be identified
as different structures. Often, these problems can be partially
solved by manually scrutinizing the basis patterns produced
by NMF and/or by applying prior knowledge about the ma-
terials.

Future work will be focused on developing a technique
that can handle mixtures of phases and can also track peak
shifts as a function of composition. We will also focus on the
exploration of other ternary systems.
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