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This paper reports comprehensive structural and chemical analyses for the combinatorial
Ta–C–N /HfO2 system, crucial data for understanding the electrical properties of Ta–C–N /HfO2.
Combinatorial Ta–C–N “library” �composition spread� films were deposited by magnetron
sputtering. Electron probe wavelength dispersive spectroscopy and x-ray fluorescence-yield
near-edge spectroscopy were used to quantitatively determine the composition across these films.
Scanning x-ray microdiffractometry determined that a solid solution of Ta�C,N�x forms and extends
to compositions �0.3�Ta�0.5 and 0.57�Ta�0.67� that were previously unknown. The thermal
stability of the Ta–C–N /HfO2 library was studied using high resolution transmission electron
microscopy, which shows Ta–C–N /HfO2 /SiO2 /Si exhibiting good thermal stability up to
950 °C. © 2010 American Institute of Physics. �doi:10.1063/1.3428788�

The microelectronics industry is exploring replacement
materials for the traditional gate stack �SiO2 gate dielectric
and polycrystalline silicon �poly-Si� gate electrode�, since
aggressive scaling has pushed it to its fundamental materials
limit.1 In the past decade, a huge effort has been made to
extensively study high-k gate dielectrics, and HfO2 has been
identified as a promising replacement for SiO2.2,3 However,
the selection of metal gates compatible with high-k gate di-
electrics remains complicated by numerous issues, such as
achieving a suitable work function ��m�, and high tempera-
ture �at least to 1000 °C� thermal stability of the films and
interfaces.4

The metal gate electrode system Ta–C–N has attracted
attention5–7 due to its tunable �m, high temperature and
chemical stability, and good mechanical properties. How-
ever, physical and electrical characterization over a wide
composition range in a ternary system is too tedious to carry
out using the conventional one-composition-at-a-time strat-
egy. Combinatorial methodology, which enables hundreds of
different samples to be made and characterized in parallel, is
a much more efficient way to approach the problem.8–10 The
goal of this research is to systemically characterize the com-
position, structure, and interfacial quality of Ta–C–N films
libraries on HfO2 /SiO2 /Si.

A radio frequency reactive magnetron sputtering
system11 was employed to deposit the Ta–C–N libraries at
room temperature. Ta and C targets were mounted in two
separate guns, and reactively sputtered in Ar /N2 at a pres-
sure of 0.6 Pa. The details of combinatorial library synthesis
by sputtering are published elsewhere.12,13 The library film,
deposited on HfO2, is about 50 nm thick and about 15
�15 mm2 in size. Rapid thermal anneals �RTAs� at 950 °C
were implemented to determine the thermal stability of the
Ta–C–N /HfO2 /SiO2 /Si gate stacks. All library films were

subjected to a forming gas anneal �FGA� at 400 °C for 30
min to reduce the interface state densities �Dit�.

Electron probe wavelength dispersive spectroscopy
�WDS� �energy of 15 keV, current of 50 nA, and a probe
diameter of 30 �m� was used to determine the variation in
the Ta content. An integrated intensity of the L� line of Ta
�7.1 keV�, measured across the film, was assumed to reflect
the Ta concentration because the corrections for the atomic
number, absorption, and fluorescence �i.e., ZAF correction�
are small since both C and N are much lighter than Ta. X-ray
fluorescence-yield near-edge spectroscopy �FYNES�,14 car-
ried out on the NIST U7A beamline at the National Synchro-
tron Light Source, enabling not only the identification of
chemical bonds but a determination of their relative number
densities within a sample, was used to measure the C/N ratio
across the library films. A Nylon 6 film, with its known C/N
ratio �=6�, was used to calibrate the FYNES measurements.
In addition, pure films of TaNx and CNx were deposited for
the purpose of internal calibration/reference. A scanning
x-ray microdiffractometer, with a beam diameter of 500 �m,
was used to study structure evolution in the Ta–C–N librar-
ies. Cross-sections of samples cut from selected locations in
the combinatorial libraries were examined in a high reso-
lution transmission electron microscope �HRTEM�, equipped
with a postcolumn imaging filter and a charge-coupled de-
vice �CCD� camera. Electron energy loss spectra �EELS�
were recorded using an imaging filter with the microscope
operated in the TEM imaging mode. The interfaces in the
Ta–C–N /HfO2 /SiO2 /Si multilayered gate stack structures
were oriented parallel to the energy dispersion direction so
that the two-dimensional EELS spectra recorded on the CCD
camera were spatially resolved across the layer stack. Differ-
ent portions of the EELS spectra were collected separately to
maintain high ��1 nm� spatial resolution.

Figure 1�a� shows the measured fluorescence yields of C
and N for following four samples: a TaNx film, a CNx film, aa�Electronic mail: kao-shuo.chang@nist.gov.
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Ta–C–N library sample, and a Nylon 6 film. As seen in the
Fig. 1�a�, Nylon 6 and CNx show constant C and N fluores-
cence yields across their sample areas. Likewise, TaNx
shows constant N fluorescence yield, as expected. A trace-
able small amount of C has been observed in the TaNx films,
most probably as a result of contamination in the sputtering
chamber. A small difference is observed, however, between
the N yields of the CNx and TaNx samples, most probably
due to a difference in their abilities to incorporate N.15,16

The Ta–C–N library film, in contrast, yields C and N
signals that vary between those of the CNx and TaNx films.
The N signal decreases from the CNx-rich end to the
TaNx-rich end, consistent with the N variation for the pure
CNx and TaNx films. However, the C signal does not vary
over a wide range, as it is much lower close to the CNx-rich
end than expected �compared to the CNx sample�, and
slightly higher close to the TaNx-rich end. This can be ex-
plained in the following way: �1� the pure CNx and TaNx
regions are not achievable in the library film because both
the Ta and C targets are reactively sputtered continuously,
and there is a small gap between the moving shutter12,13 and
the substrate that allows the introduction of a small amount
of material from one target when the other target is in the
deposition position, and �2� the resulting small amount of
TaNx introduced close to the CNx-rich end of the library film
limits the formation of CNx, since a solid solution of
Ta�C,N�x is more thermodynamically favorable than CNx.17

C competes unfavorably with N for the available octahedral
interstitial sites in Ta–C–N during the reactive sputtering
process.

Figure 1�b� shows the C/N ratios. The C/N ratio of Ny-
lon 6 was normalized to 6, and then compared to the other
samples. The corresponding C/N ratio for pure CNx is �11.
The C/N ratio of our Ta–C–N library film did not vary sig-
nificantly, between �6.5 �the CNx-rich end� to �5.5 �the
TaNx-rich end�, for the reasons previously discussed. Figure
1�c� shows the Ta variation determined by electron probe
WDS for the Ta–C–N library. The intensity of Ta was moni-
tored as a function of position to determine the relative

amount of Ta present at each point along the library, and then
normalized to 1 for the maximum intensity. A linearly de-
creasing trend was seen from the TaNx-rich end toward the
CNx-rich end.

Combining the results from WDS and FYNES-based
measurements, the compositional range of the Ta–C–N li-
brary film is plotted �the black solid and dashed line� in the
ternary phase space in Fig. 2. Here we assume that no other
elements �e.g., oxygen� are incorporated into the library. In
fact, oxygen has been found in the library film after anneal-
ing �to be discussed later�. The equilibrium phase fields for
Ta�C,N�x and Ta2�C,N�x �Ref. 18� are also plotted in Fig. 2.

Figure 3 shows x-ray diffraction scans as a function of
position on the library. The spectra were recorded using the
�-scan mode, and intensities are integrated in the � direction
for each 2� angle. As seen in Fig. 3�a�, a three-dimensional
plot of the Ta–C–N library, polycrystalline Ta�C,N�x is ob-
served. The �111� peak of the Ta�C,N�x face centered cubic
�FCC� phase dominates and the �200� Ta�C,N�x peak is very
weak; thus the film is highly textured. The intensity distribu-
tion �peak width� and average 2� value of the �111� peak
continuously changes as a function of position, that is, as a
function of composition. To further illustrate this, a top view
of the plot is shown in Fig. 3�b�. The �111� peak is observed
systematically shifting from �35.8° �the TaNx-rich end� to

FIG. 1. �Color online� Compositional analysis for the four samples: �a�
shows the measured fluorescence yields of C and N from Nylon 6, CNx, and
a Ta–C–N library film, and the fluorescence yields of N from TaNx, using a
FYNES setup; �b� shows the C/N ratios for the samples; �c� shows the Ta
ratio, normalizing the maximum intensity to 1, determined by electron probe
WDS.

FIG. 2. Ta–C–N library film compositional data plotted in the ternary com-
position space �the black solid and dashed line�. Ta�C,N�x and Ta2�C,N�x

equilibrium phase regions are also shown �Ref. 18�.

FIG. 3. �Color online� X-ray microdiffraction spectra showing �a� peak
intensity as a function of 2� and film composition �position� and �b� top
view of the data in �a�.
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�35.1° �the CNx-rich end�, as a result of more extensive
incorporation of C and N into the interstitial sites of
Ta�C,N�x, �discussed in Fig. 1�a��. C atoms, whose radius
��0.091 nm� is significantly larger than that of N ��0.075
nm�, expand the lattice, and shift the diffraction peak to a
lower 2� value, implying the formation of a solid solution of
Ta�C,N�x. Our composition analysis data �Fig. 2� shows sig-
nificant overlap �the dashed line� with the Ta�C,N�x phase
field, but only a small overlap with the Ta2�C,N�x region,16

consistent with the x-ray diffraction results. In addition, our
x-ray diffraction results indicate that the Ta�C,N�x solid so-
lution phase field in thin films can extend over the composi-
tions �the solid line� that were previously unknown.16

Figure 4 shows typical cross section HRTEM images
and EELS spectra of the Ta–C–N /HfO2�3 nm� /
SiO2�5 nm� /Si multilayer structures, for compositions close
to the TaNx-rich end, i.e., �Ta0.7�C0.2 ,N0.1�, after FGA. As
seen in Fig. 4�a�, after FGA, most of the HfO2 layer is still
amorphous, while the Ta0.7�C0.2 ,N0.1� composition exhibits
some crystallinity, consistent with the x-ray microdiffraction
results. The low loss part of the spectrum is distinct for all
the constituent layers and contains well-defined Hf and Ta
O2,3 core edges �Fig. 4�b��. EELS spectrum-lines �Fig. 4�b��
exhibit abrupt changes across each interface which indicates
lack of significant interlayer reactions. Presence of O in the
top part of the Ta–C–N layer was confirmed indicating some
surface oxidation upon FGA. After RTA at 950 °C, both the
Ta0.7�C0.2 ,N0.1� and HfO2 layers are crystalline. However,
the sharp and well-defined interfaces for each layer are pre-
served suggesting good thermal stability of the multilayer
structure after such high temperature exposure �not shown�.

In conclusion, we have deposited Ta–C–N library films
on HfO2 /SiO2 by magnetron sputtering, with wide, moder-
ate, and small composition variations in the elements Ta, C,
and N, respectively, as evidenced by electron probe WDS
and FYNES. X-ray microdiffractometry suggests the forma-
tion of a solid solution of Ta�C,N�x, which spans composi-
tion ranges �0.3�Ta�0.5 and 0.57�Ta�0.67� much
broader than previously reported. The interfacial stability as
a function of annealing temperature at the Ta–C–N /HfO2
and HfO2 /SiO2 interfaces was studied using HRTEM, which
shows the Ta–C–N /HfO2 /SiO2 /Si structure exhibiting

good thermal stability up to 950 °C. The structural and
chemical analyses of the combinatorial Ta–C–N /HfO2 sys-
tem presented in this study provide crucial supporting data
for understanding the electrical properties of gate stacks us-
ing Ta–C–N metal gate electrodes.
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FIG. 4. �Color online� HRTEM images and EELS: �a�
HRTEM image of the Ta0.7�C0.2 ,N0.1� /HfO2�3 nm� /
SiO2�5 nm� /Si multilayer structure, after FGA and �b�
EELS spectra line images and the corresponding low
loss part of the spectrum for each layer.
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