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Abstract
Advances in high-throughput materials fabrication and characterization techniques have resulted
in faster rates of data collection and rapidly growing volumes of experimental data. To convert
this mass of information into actionable knowledge of material process–structure–property
relationships requires high-throughput data analysis techniques. This work explores the use of
the Graph-based endmember extraction and labeling (GRENDEL) algorithm as a high-
throughput method for analyzing structural data from combinatorial libraries, specifically, to
determine phase diagrams and constituent phases from both x-ray diffraction and Raman spectral
data. The GRENDEL algorithm utilizes a set of physical constraints to optimize results and
provides a framework by which additional physics-based constraints can be easily incorporated.
GRENDEL also permits the integration of database data as shown by the use of critically
evaluated data from the Inorganic Crystal Structure Database in the x-ray diffraction data
analysis. Also the Sunburst radial tree map is demonstrated as a tool to visualize material
structure–property relationships found through graph based analysis.
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1. Introduction

The last few decades have seen rapid development in
experimental and theoretical tools for fabricating, simulating,
and characterizing materials systems, bringing the dream of
rapid advanced materials discovery closer to reality. For
example, high-throughput thermodynamics and electronic-
structure calculations have resulted in multiple large

databases of materials properties predictions [1–5]. Mean-
while, advancements in combinatorial library synthesis and
characterization allow for rapid analysis of thousands of
potential functional materials in a matter of hours [6–8].
However, while both computational and experimental data are
being collected at faster and faster rates, and are being com-
piled into various databases, there is a clear lack of high-
throughput data analysis tools to unify the information of
these databases and convert them into actionable knowledge
in the pursuit of advanced materials. The development of such
data analysis tools is a key objective of the White House
Materials Genome Initiative [9].
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This work focuses on an algorithm for converting com-
position and structure data from combinatorial libraries and
material structure databases into potential composition phase
diagrams and potential constituent phases. The results can
then be used to better understand the material process–
structure–properties relationship for the material system under
investigation. The high speed of the algorithm also allows for
on-the-fly analysis—providing results to the experimentalist
during data collection and permitting a more thorough
investigation of the library, e.g. a higher resolution structure
investigation of potential structure phase change regions.
Results can also be used to seed more advanced and com-
putationally expensive analysis methods. The algorithms
described here are unsupervised methods, and the results must
therefore be verified by an expert. Hence, phase diagrams and
constituent phases identified by the algorithm should be
considered ‘potential’ until critically evaluated by an expert.

In the past, a constraint reasoning based method was
developed to identify both a composition phase diagram and
constituent phases for combinatorial libraries [10]. However,
this method relies on a collection of computationally expen-
sive operations, such as peak detection and the dynamic time
warping metric, resulting in solution times of tens to hundreds
of hours for a typical system. A human input guided version
of the algorithm was also developed [11], resulting in sig-
nificantly reduced computation time. In this paper we present
a high speed, low computational cost method for determining
composition phase diagrams and constituent phases while
also requiring minimal user input during data analysis.

Previous investigations into high speed, low computa-
tional cost algorithms have included clustering methods such
as hierarchical cluster analysis and mean shift theory to
rapidly identify composition phase diagrams from combina-
torial libraries [12, 13]. The non-negative matrix factorization
(NMF) method was used to identify potential constituent
phases [14]. In either case, the algorithms have been used to
evaluate either the phase diagram or the constituent phases,
despite the fact that the two types of data analyses are inter-
dependent—knowledge of one can be used to improve the
evaluation of the other.

Also, in the case of NMF constituent phase determina-
tion, application of NMF to an entire combinatorial library
dataset assumes that each and every constituent phase exists
throughout the combinatorial library to varying degrees. This
is not true for systems in thermodynamic equilibrium, where
Gibbs phase rule limits the number of constituent phases in
each phase region. For example a phase mixture region for a
ternary system at fixed pressure is limited to a maximum of
three constituent phases. These issues can be resolved by
utilizing the clustering results in identifying constituent pha-
ses. Additionally, the results of NMF can be highly unstable
from run-to-run. This is true even for a single dataset, due to
NMF’s reliance on a random number generator to seed the
matrix factorization [15].

Some issues have also arisen due to the use of clustering
algorithms that only analyze structure data to determine phase
diagrams. These algorithms do not require that clusters, and
therefore phase regions, are cohesive and well connected in

composition space. An example can be seen in the application
of the hierarchical cluster analysis to x-ray diffraction data in
figure 5 of [12], where a point associated with one phase
region (yellow) is surrounded by points belonging to another
phase region (red). This may be due to a few causes. The
invasive point may have been miss-clustered due to data
artifacts such as noise or background. Alternatively, it may
indicate the existence of a true structure change that should be
recognized and translated to the phase diagram. These issues
are resolved by utilizing a graph based method that allows the
user to ensure connectivity in composition space.

In this work, a matrix factorization method is combined
with a clustering method to ensure that each constituent phase
set of M members only exists over a limited range of the
composition phase diagram—the local phase region deter-
mined by the clustering algorithm, thus resolving the inap-
propriate assumption made by NMF. The two methods are
iteratively run in alternation, and are guided by an objective
function. In each iteration, knowledge of potential constituent
phases (matrix factorization) is used to improve identification
of potential phase regions (clustering) and vice versa. Thus,
by combining the clustering and matrix factorization methods,
the results of each are enhanced, resulting in an improved
composition phase diagram and set of constituent phases, as
defined by the objective function. Also, the combined method
does not rely on a random number generator for matrix fac-
torization and therefor provides stable, repeatable results.

As mentioned, the combination of the clustering and
matrix factorization methods ensures that the analysis results
obey the physical constraint that constituent phases exist over
restricted regions of the composition phase diagram. Addi-
tional data and physical constraints were imposed through the
selection of the clustering method, the matrix factorization
method, and the objective function: (1) a NMF method was
selected to ensure that the identified constituent phases are
described by non-negative structure data (e.g. strictly positive
x-ray diffraction or Raman spectra) and that each sample is
described by a positive combination of constituent phases. (2)
The objective function was chosen to ensure that the con-
stituent phases are similar to the original structure data
through a volume constraint on the vectors describing the
constituent phases. (3) A graphical model based clustering
method was chosen to ensure that the clusters, and the related
phase regions, are cohesive and well-connected in the com-
position space. The method selected allows the user to control
the relative influence of the structure and composition data in
determining the phase diagram. A discussion of ongoing
research into including additional physical constraints can be
found in the discussion section.

2. Graph-based endmember extraction and labeling
(GRENDEL) algorithm

The analysis method used here combines three algorithms.
First, spectral clustering is used to generate an initial, ‘seed’
composition phase diagram. Then the graphical-model-based
graph cut algorithm is used to control cluster connectivity and
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a NMF method is used to identify constituent phases for each
cluster. The graph cut and NMF methods are part of a mod-
ified version of the GRENDEL [16] (GRENDEL) algorithm,
which was originally developed to analyze hyperspectral
satellite images. The original GRENDEL does not call for a
non-negative constraint on the constituent phases (‘end-
members’) during matrix factorization. The incorporation of
the non-negative constituent phase constraint as well as other
modifications are described in the supplementary information.
The graph cut and NMF methods are run iteratively in a
process to minimize an objective function. The objective
function is given as:
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Here i and j index cluster number and sample number,
respectively; C is the total number of clusters; M is the
number of endmembers per cluster; N is the number of
samples; xj is the structure data for sample j; Ei is the set of
cluster dependent constituent phases for cluster i; pij are the
mixture proportions of each endmember set for each sample;
α is a coefficient for balancing the importance of the first and
second summations in the objective function; and uij defines
the cluster membership for each sample j. For this
implementation, uij is a scalar that is one if sample j belongs
to cluster i and zero otherwise, with each sample belonging to
one and only one cluster. Also, in this implementation, each
cluster has M endmembers that are not shared between
clusters. Both the use of ‘soft’ cluster membership values
(ranging between zero and one) and the sharing of end-
members across cluster boundaries are intended features of a
future implementation.

Minimizing the first summation with a non-negative
constraint factorizes the sample structure spectra (xj) into the
combination of cluster dependent constituent phases (non-
negative endmembers Ei) and abundances (pij). Minimizing
the second summation ensures that the volume described by
the constituent phases (endmember vectors) is minimized, and
that the constituent phases look as much like the original set
of structure data as possible. A further discussion of
GRENDEL, including the objective function, the optimiza-
tion method, and integration of the graph cut method can be
found in [16] and [17]. The graph cut method is discussed in
[18–20]. A discussion of the implementation used here can be
found in the supplementary information.

The general method is diagramed in figure 1. Composi-
tion and structure data from the combinatorial library (a) is
first collected. For the case of x-ray diffraction analysis,
relevant known materials in the ICSD (b) are manually
identified, their composition and structure data are imported,
and the structure data is automatically converted into simu-
lated diffraction data as described in [13]. The combined
structure data (c) is then analyzed using the spectral clustering
method [21] with the cosine metric to generate an initial

composition phase diagram (d) and the composition data is
tessellated to generate a composition space graph (e) where
each sample is a vertex and the edges connect neighboring
samples. The data, along with the graph and the seed phase
diagram are then fed into GRENDEL which determines a
composition phase diagram (f) and constituent phases (g).
figure 2 provides a flow chart for the data process, showing
how each variable is updated through the analysis method,
beginning with the use of spectral clustering to generate the
initial composition phase diagram described by cluster
membership matrix U and tessellation to create the compo-
sition space graph described by similarity matrix S.

3. Results

The analysis was run on three datasets for the three thin-film
composition spreads of Fe–Ga–Pd [12], (Bi,Sm)(Sc,Fe)O3

[22], and Fe–Nb–O [23]. For the Fe–Ga–Pd dataset, experi-
mental x-ray diffraction and composition data were used as
well as composition and structural data for the known con-
stituent binary phases from the ICSD. The ICSD structural
data was converted to simulated diffraction patterns as
described in [13]. The (Bi,Sm)(Sc,Fe)O3 dataset is composed
of composition and Raman spectra. The Fe–Nb–O system is
described by a combinatorial library coordinate system and
Raman spectra, as composition data was not available. All
analysis was performed in MATLAB on a dual core i5-
2467M 1.6 GHz laptop with 4 GB of RAM4.

The Fe–Ga–Pd dataset was previously investigated using
hierarchical cluster analysis and mean shift theory based
clustering as well as NMF. The results found by the
GRENDEL method are shown in figure 3 and are fairly
similar to those reported for the previous algorithms [12–14],
while also providing stable, repeatable results for the con-
stituent phase determination. Computation time was 42 s.
figure 3(a) shows the initial clustering result given by spectral
clustering, with the experimental data shown as circles and
the ICSD simulated data shown as squares. The stray red and
green points show the previously mentioned issue of cluster
connectivity. Figure 3(b) shows the graph generated by tes-
sellating the composition of the samples.

Figure 3(c) provides the results of GRENDEL using the
parameters listed in the supplementary information. GREN-
DEL identifies the stray red and green points as belonging to
the blue phase region. Figure 3(d) shows the two most
dominant constituent phases for each phase region, which are
labeled with the same color as their respective phase regions.
Of particular interest is the identification of an ICSD-like
diffraction pattern for the second constituent phase of the light
blue phase region. The diffraction pattern is almost identical
to the ICSD-calculated diffraction pattern for Fe0.7Ga0.3. The

4 Certain commercial equipment, instruments, or materials are identified in
this report in order to specify the experimental procedure adequately. Such
identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply
that the materials or equipment identified are necessarily the best available for
the purpose.
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Fe0.7Ga0.3 simulated sample is indicated by an arrow in
figure 3(c).

As discussed in the literature, hierarchical clustering and
NMF do not take into account the possibility of peak shifting,
which causes a split cluster in the Fe heavy region [13]. This
is also an issue with the current implementation of GREN-
DEL as can be seen by the two clusters (green and orange) in
the Fe rich region of the composition phase diagram. The four
constituent phases identified for these two regions can all be
recognized as the BCC Fe structure, with composition-
dependent shifts to the (110) diffraction peak. Work is
ongoing to establish whether the use of a shift resilient metric
would remove this limitation.

Analysis results for the (Bi,Sm)(Sc,Fe)O3 system are
shown in figure 4. In this study, the pseudo-ternary thin-film
spread was fabricated by pulsed laser deposition. The spread
was designed such that along one direction, there was a
continuous substitution of the A-site (Sm substituted for Bi in
perovskite BiFeO3) up to an amount-of-substitution
fraction of 20%. Along the other direction, a continuous
B-site substitution of Fe with Sc up to an amount-of-

substitution fraction of 20% was explored: the ternary maps
Bi1−xSmxFe1−yScyO3 with x and y up to 0.2. This analysis
took 7 s of computation time. Figure 4(a) gives the phase
diagram results when only applying spectral clustering. The
lack of a composition space cluster connectivity constraint
can be seen in the scatter of the blue and green points
(indicated by blue and green diamonds), mirroring the results
found when using hierarchical cluster analysis [22]. The
composition graph for the system is shown in figure 4(b) and
the phase diagram results and constituent phase results are
given in figures 4(c) and (d) respectively. Both are in good
agreement with the results of [22]. Peaks seen in the spectra
figure 4(d) at around 150 cm−1 and 175 cm−1 are associated
with A1 and A2 modes of the R3c structure of the BiFeO3

parent compound, respectively. Separate x-ray and electron
microscopy studies on selected composition samples from
this system have been carried out, and the clustering results
here are consistent with the fact that in the light blue region,
there is an antiferrodistortive phase [24]. The compositions
marked in red correspond to a region where there is a co-
existence of a ferroelectric and an antiferroelectric phase [25].

Figure 1. Diagram of data flow. Composition and x-ray diffraction are collected from the composition spread combinatorial library (a) and
database (b) and then compiled (c). The x-ray diffraction data is clustered to provide an initial composition phase diagram (d) and the
composition data is tessellated to generate a composition space graph (e). GRENDEL is then used to determine a potential phase diagram (f)
and potential constituent phases (g).
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Figure 2. Data flow chart for the initial spectral clustering and graph determination through GRENDEL.

Figure 3.Analysis results for Fe–Ga–Pd composition spread: (a) spectral clustering results, (b) tessellated composition graph, (c) GRENDEL
phase diagram, (d) GRENDEL constituent phases and their reflections.
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Use of a moderate balance between the influence of com-
position and Raman data in clustering was used for these results,
giving a split blue region with two distinct composition bound-
aries. The balance was obtained by a scalar weight applied to the
data cost used in the graph cut clustering, as described in the
supplementary information. Use of a stronger composition con-
nectivity constraint in graph cut clustering (i.e. a reduced data cost
weight) results in the absorption of the smaller blue cluster into
the neighboring green phase region, as shown in figure 4(e). Also,
the capability was added to identify a cluster that is not well-
connected in composition space and relabel the parts as different
clusters, as seen in figure 4(f). Here the blue cluster was identified
to have two unconnected regions, which were then split into a
blue and yellow cluster. This is useful when it is believed sepa-
rated cluster points indicate the existence of an additional unique
structure. In the future implementation of this algorithm, the data

cost weight will be optionally determined through a model
selection method such as the Bayesian Information Criteria. User
control over the parameter will also remain an option as it allows
the user to see the range of possible phase diagrams describable
by the data under the constraints of the GRENDEL algorithm.

The Fe–Nb–O combinatorial library was analyzed
using the library coordinates as a surrogate for the com-
position map, giving a sample coordinate based phase dia-
gram. This library was fabricated by pulsed laser
deposition. The results are shown in figure 5, with the initial
spectral clustering results (Raman) given in figure 5(a), the
library coordinate-based connectivity graph given in
figure 5(b), the GRENDEL phase diagram shown in
figure 5(c), and the constituent phases given in figure 5(d).
The analysis took 26 s, and the results are in good agree-
ment with those found in [23].

Figure 4. Analysis results for (Bi,Sm)(Sc,Fe)O3 composition spread: (a) spectral clustering results with scattered cluster points indicated by
diamond markers, (b) tessellated composition graph, (c) GRENDEL phase diagram, (d) GRENDEL constituent phases, (e) GRENDEL phase
diagram results when requiring well-connected phase regions, (f) blue cluster of (c) is split giving the blue and yellow clusters.
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4. Discussion

The phase diagram and constituent phases for three ternary or
pseudo-ternary material systems have been analyzed using the
high-throughput GRENDEL algorithm. The algorithm has
been shown to be capable of integrating database data, i.e.
critically evaluated data from the Inorganic Crystal Structure
Database, and it has successfully analyzed both x-ray dif-
fraction and Raman spectra for either a composition space or
the combinatorial library space. While this study focused on
ternary or pseudo-ternary material systems, GRENDEL may
also provide benefits in analyzing binary, quaternary, and
more complex material systems. However, significantly
complex systems are likely to suffer from the ‘curse of
dimensionality’ [15], requiring an exponential number of
samples (scaling with the number of component materials) to
determine the composition phase diagram. All analysis
described in this paper was performed on a dual-core laptop
and results for each dataset were obtained in under one
minute.

The graphical model basis of GRENDEL allows for
improved phase diagram determination as it allows the user to
ensure that the clustering results that are used to identify the
phase diagram are well connected in the composition space.
GRENDEL also provides stable and improved results for the
constituent phase identification due to its lack of requiring a
random number seeding for matrix factorization.

Furthermore, GRENDEL utilizes the information of each of
the phase diagram and constituent phases to iteratively con-
verge to optimized results.

As discussed in the introduction, GRENDEL has a set of
built in physical constraints that ensure the resulting con-
stituent phases are positive and similar to the given structure
data and that the phase regions are well connected. Additional
physical constraints can be added through modifications to
the clustering algorithm, the matrix factorization algorithm,
and the objective function. For example, work is underway to
determine if a metric that permits feature shifts in the structure
data can be used in computing structure similarity. This
should provide improvements for both the phase region
determination and constituent phase identification when
dealing with peak shifts like the ones seen in the Fe–Ga–Pd
system. Also, the Gibbs phase rule can be introduced through
the addition of sparsity constraints in the objective function.
The existence of multiplicative factors for each constraint
(summation in the objective function) also allows the user to
vary the impact of each constraint on the results or ignore
them completely. Due to the versatility of the GRENDEL
method, it may also be possible to incorporate such variances
into an ensemble method.

It may be of interest to visualize the results of GREN-
DEL or other clustering analysis techniques in a manner that
clearly represents the material structure–property relationship.
The sunburst, a particular type of radial tree map, can be used

Figure 5. Analysis results for Fe–Nb–O library: (a) spectral clustering results, (b) tessellated composition graph, (c) GRENDEL phase
diagram, (d) GRENDEL constituent phases.
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to visualize the relationship between different structure clus-
tering results and their relationship to functional properties.
An example is shown in figure 6(a).

Each of the inner rings shows a clustering result for the
Raman data from the (Bi,Sm)(Sc,Fe)O3 library, with each
sample represented by an angular direction. The most central
ring shows the samples sorted into three clusters labeled
green, blue, and magenta, corresponding to the composition
diagram of figure 6(b). As the parameters of the clustering
algorithm are varied, different clustering results are obtained,
visualized by the concentric rings. Despite variation in clus-
tering parameters, the majority of the samples in the blue and
magenta clusters tend to remain in the same respective cluster,
indicating that the sample structure similarities are stable
across clustering results. Alternatively, the samples found in
the green cluster tend to separate into three to five sub-
clusters.

For this library, ferroelectric hysteresis loops were also
measured at each point [22]. The outer red-and-blue radial
ring displays the coercive electric field measured for each
sample. Samples in the magenta cluster vary in coercive field
from 9 kV cm−1 to 316 kV cm−1, samples in the blue cluster
vary between 281 kV cm−1 and 387 kV cm−1, and samples in
the green cluster generally showed ‘open loops’ indicating
that these samples suffered from leakage current (and a
coercive field cannot be assigned). Samples with ‘open loops’
are indicated in blue. It can be seen from the diagram that the
clustered structures correspond to and are indicative of
coercive field range. Thus, the Sunburst diagram provides a
visualization of the materials structure–property relationship.
In this case, the Sunburst shows that there is a direct corre-
lation between Raman spectra taken at each site and the fer-
roelectric hysteresis loops.
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