Room temperature ferromagnetic *n*-type semiconductor in $(In_{1-x}Fe_x)_2O_{3-\sigma}$

Jun He and Shifa Xu SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025-3493

Young K. Yoo, Qizhen Xue, Hyung-Chul Lee, Shifan Cheng, X.-D. Xiang,^{a)} and Gerald F. Dionne^{b)} Intematix Corporation, 351 Rheem Blvd, Moraga, California 94556

Ichiro Takeuchi

Department of Materials Science & Engineering and Center for Superconductivity Research, University of Maryland, College Park, Maryland 20742

(Received 16 August 2004; accepted 3 December 2004; published online 25 January 2005)

The thin film synthesis and characterization of room temperature ferromagnetic semiconductor $(In_{1-x}Fe_x)_2O_{3-\sigma}$ are reported. The high thermodynamic solubility, up to 20%, of Fe ions in the In_2O_3 is demonstrated by a combinatorial phase mapping study where the lattice constant decreases almost linearly as Fe doping concentration increases. Extensive structural, magnetic and magneto-transport including anomalous Hall effect studies on thin film samples consistently point to a source of magnetism within the host lattice rather than from an impurity phase. © 2005 American Institute of *Physics*. [DOI: 10.1063/1.1851618]

Room temperature ferromagnetic semiconductors have been of great interest due to their potential spintronics applications. Many candidates have been discovered through conventional and combinatorial approaches.^{1–11} In most of the other magnetic semiconductors, doped magnetic ions exhibit very low solubility in host semiconductors, and the origins of ferromagnetism in some of the compounds have been attributed to magnetic impurities.¹² Therefore, materials systems based on host semiconductors with high solubility of magnetic ions are highly desirable to form thermodynamically stable magnetic semiconductors. In this letter, we describe the discovery and characterization of a ferromagnetic semiconductor system based on In_2O_3 host lattice in thin film format.

In₂O₃ is a wide band gap semiconductor with cubic bixbyite crystal structure. Its lattice constant is 10.12 Å in a bcc unit cell. In_2O_3 can be made to a highly conducting *n*-type semiconductor by introducing oxygen deficiencies (σ) or Sn doping. The high solubility of Fe in In₂O₃ host lattice was first identified by a combinatorial experiment using a continuous phase diagram mapping technique. A thin film $(In_{1-x}Fe_x)_2O_3$ with 0 < x < 0.4 was fabricated on an $Al_2O_3(0001)$ substrate using a combinatorial ion beam sputtering system. The resulting continuous phase diagram was investigated using a scanning microbeam diffractometer with a focus spot of 50 μ m.^{13,14} Figure 1 shows Vegard's law plot derived from Lorentzian fitting of (222) peak. The lattice constant decreases linearly as x increases (the Fe^{3+} ion is smaller than the In^{3+} ion), indicating solubility up to 20% Fe concentration. Above 20% Fe concentration, the lattice constant remains constant and the impurity phase, likely to be Fe_3O_4 or InFeO₃,¹⁵ starts to appear as evidenced by the XRD map. The high solubility of Fe in In₂O₃ lattice may be explained by the fact that the most probable valence states of both In and Fe ions are the same, i.e., In^{3+} and Fe^{3+} , while those of other semiconducting oxides, such as $Zn^{2+}O$, $Ti^{4+}O_2$, $Sn^{4+}O_2$, are different.

The $(In_{1-x}Fe_x)_2O_{3-\sigma}$ thin films of single compositions were grown on Al₂O₃(0001) substrate by pulsed laser deposition (PLD) using corresponding stoichiometric targets. Valence variations of doped magnetic elements were induced by growing the samples in high vacuum (i.e., oxygen deficient), and/or co-doped with a small amount of Cu in the range of 2 at. %, in order to create mixed valence cations, i.e., Fe²⁺, Fe³⁺, necessary for ferromagnetism and charge transport.¹⁶ The background pressure of PLD system is in 10^{-7} Torr. Different flow rates of high purity O₂ gas were introduced to vary the O2 partial pressures. The pulsed Excimer laser of KrF(λ =248 nm) with the beam energy density of 2.4–2.8 J/cm², repetition rate of 10 Hz, and pulse duration of 10 ns was used, yielding a typical deposition rate of 2.8 Å/s. The substrates were heated during thin film deposition, and a typical film thickness of a sample was 5000 Å measured by Dektak 3 profilometer.

The x-ray diffraction patterns for the individual thin films were obtained using Rigaku Mini Flex⁺ Diffractometer. The respective XRD patterns for $(In_{1-x}Fe_x)_2O_{3-\sigma}$ with x = 15% and Cu co-doping, and the sample with x=10% and no Cu doping, grown at 550 °C under 10^{-7} Torr, are shown in Fig. 2. The data exhibit only (222) and (444) orientation peaks of In_2O_3 , indicating highly oriented growth along

FIG. 1. Vegard's law (lattice constant as a function of Fe doping concentration) plot of thin film $(In_{1-x}Fe_x)_2O_3(x=0-0.4)$ phase diagram.

86, 052503-1

Downloaded 19 Feb 2009 to 129.2.19.102. Redistribution subject to AIP license or copyright; see http://apl.aip.org/apl/copyright.jsp

^{a)}Author to whom correspondence and requests for materials should be addressed; electronic mail: xdxiang@intematix.com

^{b)}Consultant of Internatix, can be reached at MIT Lincoln Laboratory, 244 Wood Street, Lexington, College Park, Maryland 20742.

^{© 2005} American Institute of Physics

FIG. 2. (Color online) XRD of thin film samples of $(In_{1-x}Fe_x)_2O_{3-\sigma}$ and Fe_3O_4 in logarithmic scale. The intensity bars from standard diffraction patterns for bulk In_2O_3 and Fe_3O_4 are also included for comparison.

[111] direction. No impurity peak was detected in both thin film samples, indicating a single-phase growth. For comparison, the XRD pattern of a Fe₃O₄ thin film sample grown on the same substrate at 650 °C under 10^{-7} Torr is presented in Fig. 2, along with standard XRD patterns for bulk In₂O₃ and Fe₃O₄. Although not all peaks are visible due to the preferred growth orientation of thin film samples, it is clear that the XRD of the doped In₂O₃ thin film samples is completely different from that of Fe₃O₄.

The magnetic field dependence of sample magnetic moment was measured by superconducting quantum interference device magnetometer. Only those thin films with good conductivity grown under high vacuum were found to be ferromagnetic. The *M*-*H* curve taken at 5 K for the thin film sample of Fe 15% with Cu co-doping, grown at 550 °C in vacuum (5×10^{-7} Torr), is shown in Fig. 3. Ferromagnetic behavior is evident with measured coercive fields of about 450 Oe. The inset shows the room- temperature *M*-*H* curve of a different sample, with x=0.2, indicating room temperature ferromagnetism (T_c of 750 K was measured on bulk ceramic samples¹⁷). The saturation magnetization is

FIG. 3. *M*-*H* curves at 5 K for $(In_{1-x}Fe_x)_2O_{3-\sigma}$ thin film sample with 15% Fe and 2% Cu co-doping. The magnetic field is applied to parallel (H_{\parallel}) to the film surface. The inset shows room temperature *M*-*H* curve of $(In_{1-x}Fe_x)_2O_{3-\sigma}$ thin film sample with 20% Fe and 2% Cu co-doping.

FIG. 4. The resistivity of $(In_{1-x}Fe_x)_2O_{3-\sigma}$ with Cu co-doping and Fe₃O₄ thin films as function of T^{-1} . $(In_{1-x}Fe_x)_2O_{3-\sigma}$ with Fe 20% was grown at 650 °C while Fe 15%, at 550 °C.

 $\sim 1.45 \mu B/Fe$ atom, assuming all the Fe atoms contribute to the magnetization. The coercive fields are much larger than those of bulk samples¹⁷ indicating a larger magnetocrystalline anisotropy, probably due to stress-induced inverse magnetostriction caused by lattice and thermal expansion mismatches with the substrate. Higher temperature measurements of thin films were not made since oxygen content in a thin film will change significantly due to slow heating process.

The possible magnetic impurity phases in the system are Fe₃O₄ and CuFe₂O₄. CuFe₂O₄ samples annealed in oxygen gain maximum magnetization (Fe 3+ is responsible for the magnetism in the system) while $(In_{1-x}Fe_x)_2O_{3-\sigma}$ thin films with Cu co-doping annealed in a slightly high O₂ partial pressure show no sign of ferromagnetism. This observation rules out contribution by CuFe₂O₄ impurity phase, because, if CuFe₂O₄ impurity phase had been responsible for the observed magnetism in the $(In_{1-x}Fe_x)_2O_{3-\sigma}$ samples with Cu co-doping, the ferromagnetism must be present in the samples annealed in oxygen. Since the saturated magnetic moment of Fe₃O₄ is reported to be about 1.3 μ_B /Fe,¹⁸ if the observed magnetic moment of about 1.45 μ_B/Fe had been attributed to Fe₃O₄, one would have to assume that almost 100% of doped Fe ions ended up forming Fe₃O₄. This is impossible because significant XRD peaks of Fe₃O₄ would appear if such a large amount of Fe_3O_4 were present. Also, if most of the doped Fe ions had formed Fe₃O₄, the significant lattice constant change, indicative of incorporation of Fe ions into In₂O₃, would not have been observed in Fig. 1. Further investigation using extended x-ray absorption fine structure (EXAFS) spectrum has confirmed that indeed, the magnetism is originated from mixed valence of Fe²⁺/Fe³⁺ situated in In_2O_3 lattice (due to space limitation, this data will be

FIG. 5. (a) Hall resistivity vs $\mu_0 H$ of the $(In_{1-x}Fe_x)_2O_{3-\sigma}$ thin films with Cu co-doping (x=0.2 and 0.15, respectively). (b) is the AHE term after subtracting the ordinary Hall effect term for the thin film sample with Fe 15%; the data were collected at 286 K. Also shown is the *M*-*H* curve of the same sample measured at 5 K.

Downloaded 19 Feb 2009 to 129.2.19.102. Redistribution subject to AIP license or copyright; see http://apl.aip.org/apl/copyright.jsp

TABLE I. Various physical parameters from Hall measurements at 286 K: μ_{H} : Hall mobility; n: carrier density; M_s : saturated magnetic moment (at 5 K).

$(In_{1-x}Fe_x)_2O_{3-\sigma}$ with 2% Cu R	$R_0 \ 10^{-2} \ cm^3/C$	$\mu_H \mathrm{~cm^2~V^{-1}~S^{-1}}$	$n \ 10^{20} \ \mathrm{cm}^{-3}$	$R_{\rm AHE}~{\rm cm}^3/{\rm C}$	$\alpha \ \mathrm{cm}^2 \ \mathrm{V}^{-1} \ \mathrm{S}^{-1}$	$\rho~10^{-3}~\Omega~{\rm cm}$	$M_s \ \mu_B/{ m Fe}$
1 $x=0.2$ 650 °C, 7×10^{-7} Torr	-5.84	8.55	1.07	0.06	9.3	6.84	1.53
2 $x=0.15$ 550 °C, 7×10^{-7} Torr	-19.1	32.2	0.33	0.28	48	5.79	1.47

published elsewhere¹⁹), not the impurity phase of Fe_3O_4 or $CuFe_2O_4$.

The electrical and magneto-transport properties were measured at various temperatures in a cryostat equipped with a 12 T superconducting magnet. Normal resistivitities (ρ) of different thin film samples as a function of T^{-1} are shown in Fig. 4. $\rho(T)$ of a pure Fe₃O₄ thin film, deposited at 650 °C in a similar vacuum condition as $(In_{1-x}Fe_x)_2O_{3-\sigma}$ thin film different from those samples, is drastically of $(In_{1-x}Fe_x)_2O_{3-\sigma}$ thin film samples, which better fit $T^{1/n}$ behavior in low temperature region with n close to 2. The activation energy E_{act} obtained for Fe₃O₄ is 55 meV, similar to the values reported for a single crystal sample and from other thin film studies.²⁰ However, the resistivity of $\sim 170 \text{ m}\Omega$ cm at room temperature and saturation magnetic moment of 0.14 μ_B /Fe at 5 K are not optimized to the ideal values of bulk Fe₃O₄, which are ~10 m Ω cm at room temperature and 1.3 μ_B /Fe, respectively.^{18,20} In fact, to our knowledge, no Fe₃O₄ thin film work has demonstrated magnetization value that is close to 1.3 μ_B /Fe. For this reason, it is unlikely that the observed saturation magnetic moment $(1.45\mu_B/\text{Fe})$ and transport properties of $(In_{1-x}Fe_x)_2O_{3-\sigma}$ thin film samples originated from Fe₃O₄.

Hall resistivity ρ_{xy} in magnetic materials can be expressed as $\rho_{xy} = R_0 B + \mu_0 R_{AHE} M$. The first term is an ordinary Hall effect and the second is the anomalous Hall effect (AHE), where B is the internal magnetic induction, M the magnetization and R_{AHE} the anomalous Hall coefficient. $R_{\text{AHE}}(T) = \alpha \rho_{\text{xx}}(0, T)$, where $\rho_{\text{xx}}(0, T)$ is the normal resistivity at zero field and α is a T-independent parameter with dimension of mobility.²¹ Hall resistivity $\rho_{xy}(\rho_H) \mu_0 H$ curve for two $(In_{1-x}Fe_x)_2O_{3-\sigma}$ thin films are plotted in Fig. 5(a); ρ_{xy} is linear up to high field as expected, with a vertical shift at low field indicating an AHE. If the ordinary Hall resistivity term is subtracted, as shown in Fig. 5(b) (formed by triangle symbol), the AHE term near zero field can be seen more clearly with a similar hysteretic loop as measured M-H curve, also shown in Fig. 5(b) (dotted curve). Note some small discrepancy in details of field dependence can be attributed to the effect of small negative magnetoresistance and sample alignment issue for each measurement. The M-H curve used here was measured at 5 K. As the T_c of the sample is about 750 K,¹⁷ and the M-H curve is fully saturated, we do not expect significant difference between low temperature and room temperature magnetization due to ferromagnetism. Both thin film samples were measured to be *n*-type semiconductors and their corresponding physical parameters are listed in Table I. The observed AHE suggests that transport carrier interacts strongly with the local magnetism.

Discovery of thermodynamically stable ferromagnetic *n*-type semiconductor $(In_{1-x}Fe_x)_2O_{3-\sigma}$ system is an important advance for future coherent spin transport device applications. Because In_2O_3 -based compounds have been widely used as transparent conductors, they are attractive for the

semiconductor industry, where a wealth of knowledge is available regarding their interface with conventional semiconductors.

This work is supported by the Defense Advanced Research Projects Agency under Contract No. MDA972-01-C-0073. Y.Y. and Q.X. acknowledge support from NSF DMI-0340438. I.T. acknowledges J. Hattrick-Simpers and Minhui Yu for measurements and support from NSF DMR 0231291 and DARPA DAAD 19-03-1-0038. X.D.X. acknowledges Y. S. Chu for the discussion of structural and magnetic issues of ferromagnetic semiconductors.

- ¹T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science **287**, 1019 (2000).
- ²F. Matsukura, H. Ohno, and T. Dietl, *Handbook of Magnetic Materials* Vol. 14, edited by K. H. J. Buschow (Elsevier, Amsterdam, 2002), pp. 1–87.
- ³Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma, Science **291**, 854 (2001).
- ⁴Z. J. Wang, W. D. Wang, J. K. Tang, L. D. Tung, L. Spinu, and W. Zhou, Appl. Phys. Lett. **83**, 518 (2003).
- ⁵S. J. Han, J. W. Song, C. H. Yang, S. H. Park, J. H. Park, Y. H. Jeong, and K. W. Rhie, Appl. Phys. Lett. **81**, 4212 (2002).
- ⁶D. P. Norton, S. J. Pearton, A. F. Hebard, N. Theodoropoulou, L. A. Boatner, and R. G. Wilson, Appl. Phys. Lett. **82**, 239 (2003).
- ⁷Y. D. Park, A. T. Hanbicki, S. C. Erwin, C. S. Hellberg, J. M. Sullivan, J. E. Mattson, T. F. Ambrose, A. Wilson, G. Spanos, and B. T. Jonker, Science **295**, 651 (2002).
- ⁸F. Tsui, L. He, L. Ma, A. Tkachuk, Y. S. Chu, K. Nakajima, and T. Chikyow, Phys. Rev. Lett. **91**, 177203 (2003).
- ⁹M. L. Reed, N. A. El-Masry, H. H. Stadelmaier, M. K. Ritums, M. J. Reed, C. A. Parker, J. C. Roberts, and S. M. Bedair, Appl. Phys. Lett. **79**, 3473 (2001).
- ¹⁰N. Theodoropoulou, A. F. Hebard, M. E. Overberg, C. R. Abernathy, S. J. Pearton, N. G. Chu, and R. G. Wilson, Phys. Rev. Lett. **89**, 107203 (2002).
- ¹¹S. Cho, S. Choi, G.-B. Cha, S. C. Hong, Y. Kim, Y. J. Zhao, A. J. Freeman, J. B. Ketterson, B. J. Kim, Y. C. Kim, and B. C. Choi, Phys. Rev. Lett. 88, 257203 (2002).
- ¹²J. Y. Kim, J. H. Park, B. G. Park, H. J. Noh, S. J. Oh, J. S. Yang, D. H. Kim, S. D. Bu, T. W. Noh, H. J. Lin, H. H. Hsieh, C. T. Chen, Phys. Rev. Lett. **90**, 017401 (2003).
- ¹³Y. K. Yoo and F. Tsui, MRS Bull. **27**, 316 (2002).
- ¹⁴X. D. Xiang and I. Takeuchi, *Combinatorial Materials Synthesis* (Dekker, New York, 2003).
- ¹⁵D. M. Giaquinta, W. M. Davis, and H. C. Zur Loye, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. C50, 5 (1994).
- ¹⁶G. F. Dionne, *Magnetic Interactions and Spin Transport*, edited by A. Chtchelkanova, S. A. Wolf and Y. Idzerda (Kluwer, New York, 2003), Chap. 1.
- ¹⁷Y. K. Yoo, Q. Xue, H.-C. Lee, S. Cheng, X.-D. Xiang, S. Xu, J. He, Y. S. Chu, S. D. Preite, S. E. Lofland, I. Takeuchi, and G. F. Dionne, Appl. Phys. Lett. (submitted).
- ¹⁸R. C. O'Handley, Modern magnetic materials: principles and applications (Wiley, New York, 2000).
- ¹⁹Z. G. Yu, J. He, Y. K. Yoo, Q. Z. Xue, H. C Lee, and X. D. Xiang (unpublished).
- ²⁰S. B. Ogale, K. Ghosh, R. P. Sharma, R. L. Greene, R. Ramesh, and T. Venkatesan, Phys. Rev. B 57, 7823 (2003), and references therein.
- ²¹P. Matl, N. P. Ong, Y. F. Yan, Y. Q. Li, D. Studebaker, T. Baum, and G. Doubinina, Phys. Rev. B 57, 10248 (1998).