

Design and Fabrication of a Joule Heated Fiber-Reinforced Carbon Aerogel for Insulation

Team Carbon Aerogel

Stephen Barbagallo | Ellen Cesewski | Naveed Chowdhury Joseph Langreo | Colin Qualters | Nathaniel Schreiber

18 STARYLAND

Motivation & Background

- Cold weather clothing (e.g. ECWS)
- Reduce layering/add active layer
- Novel application in lightweight active insulation

World's lightest material a possible fix for heavy problems [Video file]. (2013, May 15) Retrieved from https://youtu.be/3bIXUBXj070

- Aerogels well known for low thermal conductivities and density
- Silica aerogels characteristically brittle
- Carbon Aerogels can be processed flexibly and conductively
 - Plethora of processing methodologies exist with varying final properties
 - May be possible to joule heat an aerogel fabric to improve cold weather performance

Target Properties

18 STARYLAND

Research Questions

- (i) What is the relationship between carbon fiber content and electrical conductivity?
- (ii) Can a carbon fiber reinforced carbon aerogel be joule heated to improve cold weather performance?

Microstructure

Electrical Properties

Thermal Performance

(iii) How would such an aerogel be fabricated if possible?

Predict Process/Property Relationship

18 SERSITA ON SERVICE SERVICE

Modelling Microstructure

Assumptions

- 2-D Microstructure
 - Yields a sheet resistance
- Fiber geometry fixed
- Pore distribution is uniform throughout aerogel

Approach

- Define Fibers
 - a. Generate a random starting point
 - b. Generate endpoint as function of orientation
 - i. Generate a random angle
 - ii. Determine final x,y, based on fixed fiber length
- 2. Fill a mesh of aerogel points around lines
- 3. Define points and line
 - Blue is Carbon Aerogel
 - Red is Carbon Fiber

Modelling Electronic Properties

Assumptions

- Discrete line scans
 - Counteract 2-D continuity issue
- No tunneling through pores
- Tunneling between fibers can be modelled as a contact resistance

$$R_{sheet} = \left(\sum_{i=1}^{\frac{width}{diameter}} \frac{1}{R_{column}(i)} \right)$$

Equation 1a

$$R_{contact} = \frac{h}{2e^2} * \frac{1}{MT}$$

Equation 1b

$$R_{\textit{Column}} = (\#blue) * \left(R_{\textit{Aerogel}}\right) + (\#red) * \left(R_{\textit{fiber}}\right) + (\#blue - red) * R_{\textit{contact}} + (\#red - \#blue) * R_{\textit{contact}}$$

Approach

Equivalent Circuit Model

- Consider each vertical line as a parallel resistor
- 2. Find resistance in each line scan (**Equation 1a and 1b**)
- 3. Sum resistances across parallel circuit (Equation 2)
- 4. Spread of resistivity -vs-fiber content

Modelling Thermal Performance

Assumptions

- Body Geometry
 - Height 'h' = 1.83m
 - Radius 'r' = 13cm
 - Mass 'm' = 90.72kg
 - Insulating Thickness 'x'
- Only consider conduction
 - Thermal Conductivity 'k' = 0.072 W/m-K
- Assume any joule heat goes into body
- All fluxes are constant across surface
- Simulation performed at room temperature

Approach

1. Account for heat in body currently

$$Q_0 = m_{body} c_{body} T_{body}$$

- 2. Account For Fluxes
 - a. Out

$$J_{out} = ka \frac{T_{cold} - T_{Body}}{dx}$$

b. In

- i. Homeostasis Control
- c. 'Joule flux'

$$J_{Ioule} = IR$$

- 3. Iterate Through 0:dt:t_f
 - a. Sum Fluxes

$$Q_{i+1} = Q_i + \left[\sum_i J_i \right] dt$$

b. Check T_{body}

Modelling Results

Fahrenheit

approximately 12.5cm at -60 degrees
Fahrenheit

18 STARYLAND

Modeling Results

Resistivity as a function of carbon fiber volume fraction.

Table 3. Joule heating inadequacy (assumes cylindrical shell of length l=1.83m.

Resistivity (Ω-m)	Thickness (m)	Resistance (ohms)	Current Applied (A)	Power Generated (W)
6.40E-04	0.05	0.00373	0.1	0.000373
6.40E-04	0.05	0.00373	0.5	0.001865
6.40E-04	0.05	0.00373	1	0.003729
6.40E-04	0.05	0.00373	10	0.037299
6.40E-04	0.05	0.00373	100	0.372994

Table 4. Power generation could be increased if current is applied across thin strips instead of bulk fabric.

Resistivity (Ω-m)	Cross Sectional Area (m²)	Resistance (ohms)	Current Applied (A)	Power Generated Per Strip (W)
6.40E-04	0.0001	1.17E+01	0.1	1.17E+00
6.40E-04	0.0001	1.17E+01	0.5	5.86E+00
6.40E-04	0.0001	1.17E+01	1	1.17E+01
6.40E-04	0.0001	1.17E+01	10	1.17E+02
6.40E-04	0.0001	1.17E+01	100	1.17E+03

Idealized Synthesis

Current Processing Restraints

- -Supercritical drier
- -Vacuum for impregnation of PAN fibers
- -Furnace for carbonization

Processing Methodologies

Ambient

Drying

Freeze

Drying

Supercritical

Drying

Performed Synthesis

- Mix DI water, resorcinol, formaldehyde, and sodium carbonate
 - \circ W/R = 90, R/C = 481, F/R = 2.008
- Impregnate Pyron® Fibers for composite creation
- Heat at 50 C for 1 day, 95 C for 2 days for gelation to occur
- Ambient drying and freeze drying of Carbon Aerogel
 - Freeze drying in order to do characterization on time and ambient drying as
 a proof of concept
 Solvent Exchange + Ambient Drying

Future Work

Electrical Modeling

- Consider a 3-D microstructure
- Consider 2-D and 3-D electron mobility
- Consider temperature effects on electron mobility

Aerogel Synthesis

- Supercritically dry samples in liquid CO₂
- Carbonize at 1000C in N₂ environment
- Consider variety of geometries and fiber contents

Thermal Modeling

- Consider fiber content effect on 'k'
- Consider radiation and convective losses
- Consider temperature effects on thermal properties

Characterization

- Confirm thermal conductivity via Differential Scanning Calorimetry
- Confirm resistivity via 4-pt probe measurements
- Perform fatigue tests to quantify flexibility

Conclusions

- Created a theoretical model of electrical resistivity as a function of carbon fiber content
- Modeled thermal performance via conductive heat losses to quantify performance
- Joule heating effects found insubstantial in current geometry
 - May still find application in different geometries
- Designed process for synthesis of idealized aerogel
 - Unable to perform synthesis due to inaccessible processing tools
 - Characterization not currently possible

Questions?

Aux - Tunneling between aerogel and fibers

$$I = \frac{2e}{h} \int_0^\infty \mathcal{T}(E) M(E) \left[\frac{1}{e^{\frac{E-\mu-eV}{k_BT}} + 1} - \frac{1}{e^{\frac{E-\mu}{k_BT}} + 1} \right] dE$$

$$I = \frac{2e}{h} \left\{ \int_{\mu}^{\mu + eV} \mathcal{T}(E) M(E) dE + \frac{\pi^2}{6} (k_B T)^2 \right\}$$

$$\times \frac{\mathrm{d}[\mathcal{T}(E)M(E)]}{\mathrm{d}E}\Big|_{\mu}^{\mu+eV} + O\left(\frac{k_{\mathrm{B}}T}{\mu}\right)^{4}$$

$$R_{\text{contact}} = \frac{V}{I} = \frac{h}{2e^2} \cdot \frac{1}{M \left[T + \frac{\pi^2}{6} (k_{\text{B}}T)^2 \frac{\text{d}^2 T}{\text{d}E^2} \Big|_{\mu} \right]}$$

$$I = \frac{2e}{h} \int_0^\infty \mathcal{T}(E) M(E) \left[\frac{1}{e^{\frac{E-\mu-eV}{k_{\rm B}T}}+1} - \frac{1}{e^{\frac{E-\mu}{k_{\rm B}T}}+1} \right] \mathrm{d}E$$

$$\mathcal{T} = \begin{cases} \exp\left(-\frac{d_{\rm vdW}}{d_{\rm tunnel}}\right) & 0 \le d \le D + d_{\rm vdW} \\ \exp\left(-\frac{d-D}{d_{\rm tunnel}}\right) & D + d_{\rm vdW} < d \le D + d_{\rm cutoff} \end{cases}$$

$$d_{\text{tunnel}} = \hbar / \sqrt{8m_e \Delta E}$$
.

$$\times \frac{\mathrm{d}[\mathcal{T}(E)M(E)]}{\mathrm{d}E}\Big|_{\mu}^{\mu+eV} + O\left(\frac{k_{\mathrm{B}}T}{\mu}\right)^{4} \bigg\}, \qquad R_{\mathrm{contact}} = \frac{V}{I} = \frac{h}{2e^{2}} \cdot \frac{1}{MT\left[1 + \frac{\pi^{2}}{6}\left(\frac{k_{\mathrm{B}}T}{\Delta E}\right)^{2} \ln T(\ln T + 1)\right]}$$

$$R_{\text{contact}} = \frac{h}{2e^2} \cdot \frac{1}{MT}$$

Aux - Tunneling through pores

$$E > V_0$$

$$T = |t|^2 = \frac{1}{1 + \frac{V_0^2 \sin^2(k_1 a)}{4E(E - V_0)}}$$

$$E = V_0$$

$$T = \frac{1}{1 + ma^2 V_0 / 2\hbar^2}$$

Aux- Equivalent Circuit Diagram

Equivalent circuit diagram for the CFCA composite with a width of two columns/lines. R(tunneling f to a) is the tunneling resistance from fiber to aerogel and R(tunneling a to f) is the tunneling resistance from aerogel to fiber.