

Designing an η -Cu₆Sn₅ alloy anode for sodium ion batteries

ENMA490 5/10/2013

Nicholas Weadock, Rajinder Bajwa, Caleb Barrett, David Lockman, Josh White, Matt Zager

0

0.5

alloying element to reduce expansion

Hoffert, et al., Science 2002, Chevrier et al., JECS 2011

1.5

2

x in Na_xM

2.5

3.5

3

Materials Science Aspects: Sandwich Making

- Physics: Kinetics of diffusion, thermodynamic stability of intermetallics
- Chemistry: Electrochemistry → deposition, electrolyte optimization
- Modeling: Density Functional Theory
- Processing: Annealing, anode processing
- Experimentation: Electrochemical Impedance Spectroscopy, Galvanostatic Cycling
 - Characterization: X-ray Diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy

Technical Approach

Technical Approach: DFT

<u>Goals</u>

- 1. Determine the voltage associated with sodiation.
 - Positive Voltage favors insertion of Na atoms \rightarrow V = $\left[\bigtriangleup G/(x_2-x_1)^* F \right]$
- 2. Determine the number of Na atoms that can be inserted in the

Cu12Sn10 unit cell.

3. Relax the sodiated structures and determine the volume expansion.

Technical Approach: IMC Growth

- Cu₆Sn₅ and Cu₃Sn layers will follow a parabolic growth law
 Cu₆Sn₅ faster overall rate
- Cu₆Sn₅/Sn interface moves with square root of time
- Calculate annealing time necessary for interface to move completely through Sn
- Assume Cu₆Sn₅ and Cu₃Sn begin growing immediately at Cu-Sn interface

Kumar, et al. (2011)

Technical Approach: Prototyping

Electrodeposition

- Deposit Sn on Cu substrate (cathode), Pt anode
- Faraday's Law of Electrolysis gives deposition time: t= (N*n*F)/I [N= moles dep., n= charges exch., F= Faraday constant, I= current]
- Electrodeposition Bath:
 - 0.014M Sn(II) Sulfate, 1.93M methanesulfonic acid, 0.05M hydroquinone
 - Methanesulfonic acid provides benefits over conventional acids (sulfuric, etc)
 - Higher solubility of metal salt (tin sulfate)
 - Helps stabilize Sn(II) ions against oxidation
 - Good electrical conductivity
 - Low toxicity, readily biodegradable
 - Hydroquinone greatly reduces the oxidation of the tin ions in the solution
 - Oxidation of Sn(II) to Sn(IV) results in formation of insoluble tin salts (sludging), removing tin from solution and reducing its ability to deposit

Results

DFT Modeling

DFT Modeling

- NaSn5 is first to form in pure Sn anodes
- Na₂-Cu₁₂Sn₁₀ Volume = 405.95 Angstroms³
- Relaxed Na₂-Cu₁₂Sn₁₀ Volume = 483.11 Angstroms³
- 19.01% Volume Expansion via DFT
- 30.14% Volume Expansion from Sn-->NaSn5 from reported theoretical values

Electrodeposition

Sample	Cu mass (g) (est.)	Desired Sn mass (g)	Deposition current (mA)	Deposition time (min)	Deposited Sn mass (g)
1	0.0091	0.0141	5.0	90	0.0134
3	0.0091	0.0141	5.0	66	0.0077
5	0.0093	0.0144	5.0	90	0.0117
6	0.0092	0.0143	5.0	90	0.0061
7	0.0076	0.0007	0.5	40	0.0001

Origin of discrepancies:

- Error in mass measurement
- Sn(II) ion oxidation

- Sn(II) ion transport and depletion
- Competing reactions

XRD and SEM/EDS

Sample	Annealing time(brs)	Sn	Cu	Cu3Sn	Cu6Sn5
1A	20	х	X	X	
3	20	х	x	X	x
5	20	x	x	x	x
6	20	х	x	X	х
1a	120	х	X	X	
3a	120	X	X	X	X
5a	120	X	X	X	
6a	120	X	X	X	x
6b	120	х			
7	12		X	X	
Si3 (Control)	0	x	X		
Si5	2.116		X	X	
Si6	2.116		X	X	

- Initial deposition:
 - Based fabrication on stoichiometry, found that sufficient annealing would take long period of time
- IMC interface movement:
 - Predicted total consumption of Sn thin layer
 - XRD identification of only Cu₃Sn likely due to excess Cu

Conclusions

• First principles calculations indicate that Na can insert into η -Cu₆Sn₅ with a capacity of at least 82 Ah/kg and 62.6% volume expansion.

Capacity
$$\left[\frac{Ah}{kg}\right] = \left(\frac{ze^{-}}{yA_{m}^{alloy}}\right) * F * \left(\frac{3600kg}{1000hr}\right)$$

- Volume expansion for the 2 Na atom system is 10% less than for pure Sn anodes, indicating that η-Cu₆Sn₅ anodes may have improved lifetime due to reduced expansion.
- Further fabrication and electrochemical characterization required to experimentally confirm DFT results.

Future Work

- Utilize Nudged Elastic Band (NEB) method to determine energy barriers for Na insertion into η-Cu₆Sn_{5.}
- Perform similar first principles calculations for ε-Cu3Sn to compare to experimental results.

- Optimize Cu/Sn ratio for substrate to obtain η-Cu₆Sn_{5.}
- Explore other deposition methods (sputtering, PLD).
- Assemble and test half-cells with the η -Cu₆Sn₅ anode.

Acknowledgements

<u>UMD:</u>

Prof. Hu

Prof. Einstein

Prof. Phaneuf

Dr. Piccoli

Dr. Zavalij

Yuchen Chen

Jon Hummel

Tom Loughran

Josue Morales

Ke-Ji Pan

Jiayu Wan

Kai Zhong

<u>MIT:</u> Prof. Ceder Dr. Mo

<u>ORNL:</u> Dr. Baggetto Dr. Ganesh Dr. Veith

This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575.

Thank You

Remaining

\$

Budget and Resources

Purpose	Item	Cost/unit (\$/unit)		Units	Cost (\$)	
	SEM in the Fablab	\$	22.00	5	\$	110.00
Characterization	X-Ray Diffraction	\$	64.00	4	\$	256.00
Characterization	X-Ray Diffraction	\$	55.00	5	\$	275.00
	Electron Probe Microanalysis	\$	25.00	1	\$	25.00
Modeling	XSEDE Allocation for VASP	\$	-	1	\$	-
	Alumina Boat (50 x 40 x 18 mm)	\$	5.00	3	\$	15.00
	Beaker (400 ml)	\$	3.24	1	\$	3.24
	Hydroquinone Electrolyte (100 g)	\$	24.09	1	\$	24.09
Prototyping	3M Electroplating Tape 470	\$	24.34	1	\$	24.34
	Thermal Evaporation	\$	61.00	2	\$	122.00
	Stir Bar	\$	5.78	1	\$	5.78
	Stopper	\$	18.95	1	\$	18.95
			Total		\$	879.40

Calculation	Service Units			
Calculation	Used			
Bulk Energy of Cu12Sn10	118			
Relaxations of Na Insertion	119			
Relaxation of 2 Na Structure	1583			
Relaxation of 6 Na Structure	6127			
Total Used	7947			
Remaining	92053			

Timeline

