

Light-activated Shape Memory Polymers (SMPs): Muscle actuation for prosthetics

ENMA490 Final Report Presentation:

Emily Dumm, Nesredin Kedir, Dave Newton, Zara Simpson, Hanna Walston, Erik Wienhold

Outline

- Justification
- Light Actuation Mechanism
- Design Goals
- Modeling and Results
 - Von Mises Stress Simulation
 - Fatigue Life Simulation
 - SMP Thickness Optimization
 - Light Actuation Calculations

- Testing and Results
 - DMA
 - Actuation Testing
- Prototyping
- Conclusions
- Acknowledgements

Justification

Motivation

- Shape memory for muscle replacement
- **Polymer** for flexibility, light-activation
 - no contamination, no thermal radiation, lightweight

Intellectual Merit

- Material properties: modeling and characterization
- **Design process**: precursor selection, modeling, specs

<u>Impact</u>

Medical applications

- researchers and patients
- muscles and other applications
- Robotics

Light Activation Mechanism

Azobenzene

Potential energy vs. dihedral angle (Tiago et al.)

Reversible photoisomerization of azobenzene (Marino et al.)

Light Activation Mechanism

• Cinnamic Acid (CA)

[2+2]cycloaddition of cinnamate group SMPs under UV light λ > 260 nm (Evans. D.A.)

Reversible photocrosslinking of cinnamic acid (Jiang et al.)

 $\lambda_1 > 260 \text{ nm}; \lambda_2 < 260 \text{ nm}$

Design Goals

- Azobenzene SMP to be used as an artificial muscle
- Light source remotely located on the prosthetic arm – Polarization controlled bending motion at λ < 514 nm
- Prosthesis pin segment can accommodate 4 strips
 4.5 cm x 0.75 cm
- Azobenzene strips modeled to simulate:
 - Von Mises stress
 - Fatigue life
 - Optimal thickness

Meshed SMP Model

von Mises Stress Simulation

Fatigue Simulation

Effects of SMP Thickness

von Mises stress vs. SMP thickness

Fatigue life vs. SMP thickness

Light Activation Calculations

- von Mises Strain ($\varepsilon_{v.M.s}$) = 0.01345 m/m
- $\Delta l = \varepsilon_{v.M.s} l_0$
- Quantum Yield
 - 0.25 (E \rightarrow Z)
 - 0.53 (Z \rightarrow E)
- Beer-Lambert law
 - $\varepsilon Cl = -log\left(\frac{P}{P_0}\right)$
- Extinction coefficient
 - ~ 2-3e+004 M-1·cm-1 (E)
 - ~ 1.5e+003 M-1·cm-1 (Z)
- $P_0 = 2.05e + 006 \text{ photons} \cdot \text{cm}^{-2}$ (E)
- $P_0 = 9.67e + 005 \text{ photons} \cdot \text{cm}^{-2}$ (Z)

3.5 x 10⁻⁸ cm / Azo molecule

Azobenzene chemical properties

- MM = 1822.22 g/mol
- $\rho = 1.09 \text{ g/cm}^3$

Testing: DMA

- Strain Ramp Test
 - Temperature: 24°C
 - 0.25% strain/min
- Exp. $\sigma_y = 24$ MPa - Theoretical = 54 MPa

Exp. E = 763.6 MPa
 Theoretical = 990 MPa

Strain Ramp Test for Azobenzene SMP sample.

Testing: Light Actuation

- 473 nm Laser 20 mW/cm²
 - No response from Azo strip
- Hg Lamp (with 418 nm filter) 82 W
 - No response from Azo strip
- 365 nm UV lamp 150 W
 - Reversible actuation possible
 - At distance ~10 cm, 3 minutes for full bending motion

Relaxed Azobenzene SMP strip.

Activated Azobenzene SMP strip.

Prototyping

- Due to expense of Azobenzene, we prototyped using CA
- Based off of Lendlein, et al.
- Synthesized monomer HEA-CA
 - Involved performing a reflux and distillation
- Grafted our polymer using HEA-CA, BA, PPG, and HEMA
- Performed grafting at 80° C for 18 hours
 - Rinsed with hexane and chloroform

Conclusions

- Goals model and prototype with azobenzene
- Accomplished/Results
 - Modeled azobenzene stress, strain, fatigue, and CAD of prosthesis
 - Tested azobenzene
 - Prototyped using cinnamic acid-based polymers
- Comparison with other designs
 - Similarities other research concerns similar applications McKibben, etc.
 - Novelty different material and mechanism for elbow bending
- Future research
 - Testing more actuation with azobenzene
 - If more money, prototype azobenzene SMPs
 - Test within actual application, prototype entire arm mechanism
 - Redesign for inclusion in robotic systems

Acknowledgements:

We would like to thank the following people:

<u>Advisor:</u> Dr. Phaneuf

<u>Lab Space:</u> Dr. Briber Dr. Kofinas

<u>Light Source:</u> Dr. Falvey Dr. Guo Romina Heymann Synthesis and Testing: Dr. Behl Dr. Lendlein Dr. White Omar Ayyub Adam Behrens Sam Gretz Wonseok Hwang Xin Zhang

<u>Glassware:</u> Dr. Kipnis Information: Dr. Al-Sheikhly Dr. Anderson Dr. Lloyd Dr. Martinez-Miranda Dr. Nie Dr. Salamanca-Riba Dr. Seog Dr. Steffek Dr. Wuttig

Questions?

EXTRA SLIDES

Technical Approach

- Background:
 - Photoisomerization of Azobenzene
 - Reversible photo crosslinking of cinnamate-groups (cinnamic acid and cinnamylidene AcOH)
- Relevant Equations:
 - High-cycle fatigue & Low-cycle fatigue (Coffin-Manson relation) => Morrow's Design rule

$$\frac{\Delta \varepsilon_{el}}{2} = \frac{\sigma_f'}{E} \left(2N_f \right)^{-b} \qquad \frac{\Delta \varepsilon_{pl}}{2} = \varepsilon_f' \left(2N_f \right)^{-c} \qquad \Delta \varepsilon = \Delta \varepsilon_{pl} + \Delta \varepsilon_{el}$$

- Empirical data:
 - Average dimensions of a human arm
- Mechanical and physical properties of azobenzene and Cinnamate group SMPs
 - Glass transition temperature and photo-induced stress
- Numerical analysis:
 - Structural and fatigue analysis via Autodesk Simulation Multiphysics

Arm Prosthesis Model/Design

- Dimensions of an average human arm (R.F. Chandler)
- Use HDPP as the base material for the prostheses
 - Density of HDPP = 0.902 g/cc (MatWeb)
- Each component of the arm is estimated as a hollow tapered cylinder with a 1 cm thickness
- Use the difference of cone volumes $V = \frac{1}{3}\pi ((r_1)^2 - (r_2)^2)(h+l) - \frac{1}{3}\pi ((r_3)^2 - (r_4)^2)(l)$

Arm Prosthesis Model/Design

Center of mass of the tapered cylinder segments

$$\bar{x} = \frac{\int \tilde{x} \, dm}{\int dm} \quad \bar{y} = \frac{\int \tilde{y} \, dm}{\int dm} \quad \bar{z} = \frac{\int \tilde{z} \, dm}{\int dm}$$
Free body diagram of the prosthetic arm (c)
$$F_{SMP}$$

$$A = (2.26 N + 0.45 N - F_{SMP} = 0$$

$$A = (2.26 N)(12.36 x 10^{-2} m) + (0.45 N)(34.0x 10^{-2} m) - F_{SMP} r_{SMP} = 0$$

 The bending moment exerted by the forearm and hand in static equilibrium is 0.432 Nm and the load on a single SMP strip that is 4.5 cm and balances the bending moment is approximately 7.025 N

Arm Prosthesis Model/Design

- Autodesk: 3D model with a pin segment
- Cross-section of forearm and upper arm cut in half
 - Flat surface to mount the SMP
- Maximum rectangle within the forearm base to extrude the pin segment
 - Maximal area for mounting SMP
- SMP strip volume
 4.5 x 0.75 x 0.25 cm3

von Mises Stress Simulation

Parameters used for structural modeling/simulation (Cheng et al.)

- Poisson's ratio 0.35
- Young's modulus 0.99 GPa
- Photo stress 25 kPa
- Other inputs
 - Weight loading 3.4 N (5x weight load of 2.71 N over 4 uniformly loaded strips)
- Autodesk Multiphysics Settings
 - Static/linear/isotropic
 - \circ 1.5x0.75 cm² area of the SMP sheet fixed (3 d.o.f)
 - Cylinder hinges fixed (3 d.o.f)
 - o Brick element
 - Auto mesh (692 elements)

Von Mises Stress

• Maximum value - 9.86 MPa (predicted yield stress is 54 MPa)

von Mises Strain Simulation

Performed using von Mises simulation parameters (Cheng et al.) and inputs/constraints

Autodesk Multiphysics Settings

- Static/linear/isotropic
- o Uniform loading

Strain response

Highest strain levels develop on the bottom and top of the surface

von Mises Strain - 0.0135 (m/m)

Predicted yield strain is 0.0545 m/m

von Mises Strain Simulation

Fatigue Simulation

• Autodesk fatigue analysis

- o T.S.: 80 MPa (Nylon 6 approximation)
- o Constant amplitude
- Half cycle of a sine wave used to model the load curve (load vs. time)
- Desired cycles to failure: 10⁵ cycles

Fatigue response

Normal: 4.027x10¹⁴ cycles

• Morrow correction:
$$\left[\frac{\Delta \varepsilon}{2} = \frac{(\sigma'_f - \sigma_m)}{E(2N_f)^b} + \varepsilon'_f (2N_f)^c\right]$$
, 2.951x10¹⁴ cycles

• Smith-watson-Topper correction:
$$\left[\frac{\Delta \varepsilon * \sigma_{max}}{2} = \frac{\sigma'_f * \sigma'_f}{E(2N_f)^b} + \varepsilon'_f * \sigma'_f (2N_f)^{b+c}\right], 1.16 \times 10^{13} \text{ cycles}$$

	Young's Modulus (GPa)	Poisons ratio	Density (g/cc)	Glass transition temperature (°C)
Azobenzene	0.99	0.35	1	56
Nylon 6 (film grade)	0.1-3.30	0.39-0.4	1.04-1.38	50

Material properties for Nylon 6 obtained (matweb.com)

Effects of SMP Thickness

• Fatigue life vs. azobenzene SMP thickness

von Mises stress vs. azobenzene SMP thickness

von Mises strain vs. azobenzene SMP thickness

Absorption of Azo by Conformation

