Department of Materials Science and Engineering University of Maryland, College Park, Maryland

1. ENMA 412 – Fundamentals of Photovoltaics

 <u>Credits and contact hours – 3 credits</u>. The University of Maryland follows the Maryland Higher Education Commission's policies on "contact hours;" specifically, one semester hour of credit will be awarded for a minimum of 15 hours, of 50 minutes each of actual class time, exclusive of registration, study days, and holidays.

Schedule: meets two 75 minute periods per week

3. Instructor's or course coordinator's name: Prof. Marina Leite

- 4. <u>Text book, title, author and year</u>: no required textbook
- 5. <u>Specific course information</u>
 - a. <u>Brief description of the content of the course (catalog description: Pre-</u> requisites or co-requisites: ENMA 300 and permission of the department.
 - b. <u>Indicate whether a required, elective, or selected elective (as per Table 5-1)</u> <u>course in the program</u>: ENMA 412 is an elective course for Materials Science and Engineering majors.
 - 6. <u>Specific goals for the course:</u> Overview of the fundamentals of photovoltaic devices, including principles of operation, with emphasis on the materials science aspects of the different technologies available.

a. <u>Specific outcomes of instruction</u>: At the end of this course, the student should be able to:

- 1. Understand how photovoltaic devices operate.
- 2. Identify and describe what materials' properties are relevant for PV applications.
- 3. Identify what are the materials currently used for PV.
- 4. Identify the limitations and opportunities provided by each technology.

5. Critically analyze the different PV materials, based on their structural, electrical, and optical properties.

b. Explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed in this course.

ABET A: Ability to apply mathematics, science and engineering principles. to design a system, component, or process to meet desired needs.

ABET E: Ability to identify, formulate and solve engineering problems.

ABET J: Knowledge of contemporary issues.

7. Brief list of topics to be covered.

The need for renewable energy resources Characteristics of a photovoltaic cell Sunlight properties Photon in, electrons out: basic principles of PV Electrons and holes in semiconductors Carriers' generation and recombination Junctions Analysis of p-n junction Solar cell characterization Project 1 Design of a solar cell: Si Design of a solar cell: Si - cont. Solar cell design - simulation Monocrystalline Si Project 2 Multicrystalline Si CdTe CIGS, CZTS Amorphous Si III-V, III-nitrides semiconductors Wire solar cells Organic PV, Dye-sensitized solar cell Perovskites Quantum dot solar cells Third generation concepts (multijunction solar cells, intermediate band solar cells, multiple exciton generation, hot carrier solar cells) Solar cell demo