Faculty Directory

Wang, Chunsheng

Wang, Chunsheng

Professor
R.F. and F.R. Wright Distinguished Chair
UMD Director of Center for Research in Extreme Batteries (CREB)
Affiliate Fellow (REFI)
Fellow, Electrochemical Society
Chemical and Biomolecular Engineering
Materials Science and Engineering
Maryland Energy Innovation Institute
Robert E. Fischell Institute for Biomedical Devices
3236 Kim Engineering Building (KEB)
Website(s):

EDUCATION

Ph.D., Zhejiang University, China, 1995

 

HONORS AND AWARDS

  • Fellow, The Electrochemical Society
  • Battery Division Research Award, 2021, The Electrochemical Society
  • UMD’s Invention of the Year, 2015, 2021
  • 2020: Top 10 Battery Researchers to Watch, The Electrochemical Society
  • Robert Franklin and Frances Riggs Wright Distinguished Chair, 2018
  • Junior Faculty Outstanding Research Award, 2013 
  • Sigma Xi (Tennessee Technological University Chapter) Research Award, 2006
  • NASA Technology Brief Patent Application and Software Release Award, 2004

 

 

Rechargeable batteries, Applied electrochemistry, Fuel cells, electroanalytical technologies, Nanostructured materials, Electrochemical gas separation and compression


Professor Wang's research interests are electroanalytical technologies, advanced materials for rechargeable batteries, fuel cells and supercapacitors. He has published over 340 papers in peer-reviewed journals including Science, Nature, Nature Energy, Nature Materials, Nature Nanotechnology, Nature Chemistry, Nature Communications, Science Advance, Joule, Proceedings of the National Academy of Sciences, Journal of the American Chemical Society, Advanced Materials. His research has been cited more than 56000 times and has an H-index of 123.
In collaboration with ARL scientists, he achieved the scientific breakthrough in electrolyte materials with the invention of water-in-salt electrolytes for Li-ion batteries (Science 2015) and transition metal-free cathode chemistry based on halide-graphite conversion-intercalation (Nature 2019), and Zn-air batteries (Nature Materials, 2018), which opened an entirely new area of high voltage aqueous electrochemistry and batteries that never existed before, and has inspired many researchers to follow.  He also developed a fluorinated electrolyte to form LiF-rich solid-electrolyte-interphase (SEI) on anode and Cathode-electrolyte-interphase (CEI) on the high-voltage cathode to stabilize electrodes (Nature Nanotechnology, 2018). This new design philosophy of SEI sets the foundation for new battery chemistries for years to come.
 

For more information about current research projects, please visit Professor Wang's web site.

Professor Wang currently teaches or has taught the following courses:

  • CHBE 301Chemical Engineering Thermodynamics I
  • ENCH 473: Electrochemical Energy Engineering
  • ENCH 437: Chemical Engineering Laboratory
  • ENCH 808/ENPM 808/ENCH648k: Advanced Fuel Cells and Batteries

Professor Wang also advises the department's  undergraduate Chem-E Car team, which took first place at the American Institute of Chemical Engineers’ (AIChE) mid-Atlantic Regional Conference's Chem-E Car Competition in 2011, and second place at the regional competition in 2012.

Selected Publications as a corresponding author

Click on the Researcher ID or Google Scholar to view all publications, citations, and H-index

  1. D. Lu, R. Li, M. M. Rahman, P. Yu, L. Lv, S. Yang, Y. Huang, C. Sun, S. Zhang, H. Zhang, J. Zhang, X. Xiao, T. Deng, L. Fan, L. Chen, J. Wang, E. Hu, C. Wang, X. Fan, Ligand-channel-enabled ultrafast Li-ion conduction, Nature2024, https://doi.org/10.1038/s41586-024-07045-4
  2. W. Zhang, V. koverga, S. Liu, J. Zhou, J. Wang, P. Bai, S. Tan, N. K. Dandu, Z. Wang, F. Chen, J. Xia, H. Wan, X. Zhang, H. Yang, B. L. Lucht, A.-M. Li, X.-Q. Yang, E. Hu, S. R. Raghavan, A. T. Ngo, C. Wang, Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries, Nature Energy2024, https://doi.org/10.1038/s41560-023-01443-0
  3. Z. Wang, J. Xia, X. Ji, Y. Liu, J. Zhang, X. He, W. Zhang, H. Wan, C. Wang, Lithium anode interlayer design for all-solid-sate lithium-metal batteries, Nature Energy2024, https://doi.org/10.1038/s41560-023-01426-1
  4. H. Wan, J. Xu, C. Wang, Designing electrolytes and interphases for high-energy lithium batteries, Nature reviews chemistry2023, https://doi.org/10.1038/s41570-023-00557-z
  5. H. Wan, Z. Wang, W. Zhang, X. He, C. Wang, Interface design for all-solid-state lithium batteries, Nature2023, https://doi.org/10.1038/s41586-023-06653-w
  6. J. Xu, J. Zhang, T. P. Pollard, Q. Li, S. Tan, S. Hou, H. Wan, F. Chen, H. He, E. Hu, K. Xu, X.-Q. Yang, O. Borodin, C. Wang, Electrolyte design for Li-ion batteries under extreme operating conditions, Nature2023, https://doi.org/10.1038/s41586-022-05627-8

  7. H. Wan, Z. Wang, S. Liu, B. Zhang, X. He, W. Zhang, C. Wang, Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design, Nature Energy, 2023, https://doi.org/10.1038/s41560-023-01231-w. Research Briefing.
  8. C. Yang, J. Xia, C. Cui, T. P. Pollard, J. Vatamanu, A. Faraone, J. A. Dura, M. Tyagi, A. Kattan, E. Thimsen, J. Xu, W. Song, E. Hu, X. Ji, S. Hou, X. Zhang, M. S. Ding, S. Hwang, D. Su, Y. Ren, X.-Q. Yang, H. Wang, O. Borodin, C. Wang, All-temperature zinc batteries with high-entropy aqueous electrolyte, Nature Sustainability2023. https://doi.org/10.1038/s41893-022-01028-x

  9. X. Yang, B. Zhang, Y. Tian, Y. Wang, Z. Fu, D. Zhou, H. Liu, F. Kang, B. Li, C. Wang, G. Wang, Electrolyte design principles for developing quasi-solid-state rechargeable halide-ion batteries, Nature Communications2023, 14:925

  10. J. Xu, T. P. Pollard, C. Yang, N. K. Dandu, S. Tan, J. Zhou, J. Wang, X. He, X. Zhang, A.-M. Li, E. Hu, X.-Q. Yang, A. Ngo, O. Borodin, C. Wang, Lithium halide cathodes for Li metal batteries, Joule, 2022, https://doi.org/10.1016/j.joule.2022.11.002

  11. R. Jain, A. S. Lakhnot, K. Bhimani, S. Sharma, V. Mahajani, R. A. Panchal, M. Kamble, F. Han, C. Wang, N. Koratkar, Nanostructuring versus microstructuring in battery electrodes, Nature Reviews Materials2022. https://doi.org/10.1038/s41578-022-00454-9.

  12. W. Feng, J. Hu, G. Qian, Z. Xu., G. Zan, Y. Liu, F. Wang, C. Wang, Y. Xia, Stabilization of garnet/Li interphase by diluting the electronic conductor, Science Advances, 2022, 8, eadd8972

  13. M. Liao, X. Ji, Y. Cao, J. Xu, X. Qiu, Y. Xie, F. Wang, C. Wang, Y. Xia, Solvent-free protic liquid enabling batteries operation at an ultra-wide temperature range, Nature Communications, 2022. 13:6064

  14. C. Wang, T. Deng, X. Fan, M. Zheng, R. Yu, Q. Lu, H. Duan, H. Huang, C. Wang, X. Sun, Identifying soft breakdown in all-solid-state lithium battery, Joule2022. https://doi.org/10.1016/j.joule.2022.05.020.

  15. S. Hou, L. Chen, X. Fan, X. Fan, X. Ji, B. Wang, C. Cui, J. Chen, C. Yang, W. Wang, C. Li, C. Wang, High-energy and low-cost membrane-free chlorine flow battery, Nature Communications, 2022. 13:1281.

  16. J. Xu, X. Ji, J. Zhang, C. Yang, P. Wang, S. Liu, K. Ludwig, F. Chen, P. Kofinas, C. Wang, Aqueous electrolyte design for super-stable 2.5V LiMn2O4||Li4Ti5O12 pouch cells, Nature Energy, 2022. https://doi.org/10.1038/s41560-021-00977-5

  17. T. Deng, X. Ji, L. Zou, O. Chiekezi, L. Cao, X. Fan, T. R. Adebisi, H-J. Chang, H. Wang, B. Li, X. Li, C. Wang, D. Reed, J-G. Zhang, V. L. Sprenkle, C. Wang, X. Lu Interfacial-engineering-enabled practical low-temperature sodium metal battery, Nature Nanotechnology2021, https://doi.org/10.1038/s41565-021-01036-6

  18. S. Hou, X. Ji, K. Gaskell, P. Wang, L. Wang, J. Xu, R. Sun, O. Borodin, C. Wang, Solvation Sheath Reorganization Enabled Divalent Metal Batteries with Fast Interfacial Charge Transfer Kinetics, Science2021, 374, 172-178.

  19. W. Sun, F. Wang, B. Zhang, M. Zhang, V. Kupers, X. Ji, C. Theile, P. Bieker, K. Xu, C. Wang, M. Winter, A rechargeable zinc-air battery based on zinc peroxide chemistry. Science, 2021, 371, 46-51.

  20. L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang, K. Xu. Water-in-Salt Electrolyte Enables High Voltage Aqueous Li-ion Chemistries. Science, 2015, 350, 938.

  21. C. Yang, J. Chen, X. Ji, T. P. Pollard, X. Lü, C. Sun, S. Hou, Q. Liu, C. Liu, T. Qing, Y. Wang, O. Borodin, Y. Ren, K. Xu, C. Wang, Aqueous Li-ion Battery Enabled by Halogen Conversion-Intercalation Chemistry in Graphite, Nature, 2019, 569, 245.

  22. J. Chen, X. Fan, Q. Li, H. Yang, M.R. Khoshi, Y. Xu, S. Hwang, L. Chen, X. Ji, C. Yang, H. He, C. Wang, E. Garfunkel, D. Su, O. Borodin, C. Wang, Electrolyte Design for LiF-rich Solid-Electrolyte Interfaces to Enable High-performance Microsized Alloy Anodes for Batteries. Nature Energy, 2020, 5, 386–397.

  23. X. Fan, X. Ji, L. Chen, J. Chen, T. Deng, F. Han, J. Yue, N. Piao, R. Wang, X. Zhou, X. Xiao, L. Chen, C. Wang, All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents, Nature Energy, 2019, 4, 882.

  24. F. Han, A. Westover, J. Yue, X. Fan, F. Wang, M. Chi, D. Leonard, N. Dudney, H. Wang, C. Wang, High Electronic conductivity as the origin of lithium dendrite formation within solid electrolytes, Nature Energy, 2019, 4, 187-196.

  25. L. Wang, A. Menakath, F. Han, Y. Wang, P. Zavalij, K. Gaskell, O. Borodin, D. Luga, S. Brown, C. Wang, K. Xu, B. Eichhorn, Identifying the components of the solid–electrolyte interphase in Li-ion Batteries, Nature Chemistry, 2019, 11, 789.

  26. L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang, C. Yang, L. Chen, J. Vatamanu, E. Hu, M. J. Hourwitz, L. Ma, M. Ding, Q. Li, S. Hou, K. Gaskell, J. T. Fourkas, X-Q. Yang, K. Xu, O. Borodin, C. Wang, Fluorinated interphase enables reversible aqueous zinc battery chemistries, Nature Nanotechnology, 2021,1730

  27. X. Fan, L. Chen, O. Borodin, X. Ji, J. Chen, S. Hou, T. Deng, J. Zheng, C. Yang, S. Liou, K. Amine, K. Xu, C. Wang, Non-flammable Electrolyte Enables Li-Metal Batteries with Aggressive Cathode Chemistries, Nature Nanotechnology, 2018, 13, 715-722

  28. F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, J. Dura, K. Xu and C. Wang, Highly Reversible Zinc-Metal Anode for Aqueous Batteries, Nature Materials, 2018, 17, 543-549.

  29. L. Chen, L. Cao, X. Ji, S. Hou, Q. Li, J. Chen, C. Yang, N. Edison, C. Wang, Enabling Safe Aqueous Lithium-ion Open Batteries by Suppressing the Oxygen Reduction Reaction. Nature Communications, 2020, 11, 1-8.

  30. X. Fan, E. Hu, X. Ji, Y. Zhu, F. Han, S. Hwang, J. Liu, S. Bak, Z. Ma, T. Gao, S.-C. Liou, J. Bai, X.-Q. Yang, Y. Mo, K. Xu, D. Su, C Wang, High Energy-Density and Reversibility of Iron Fluoride Cathode Enabled Via an Intercalation-Extrusion Reaction, Nature Communications, 2018, 9, 1-12.

  31. Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J Cumings, and C. Wang. Expanded Graphite as Superior Anode for Sodium-Ion Batteries. Nature Communications, 2014, 5, 4033.

  32. X. Fan, X. Ji, F. Han, J. Yue, J. Chen, L. Chen, T. Deng, J. Jiang, C. Wang, Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery, Science Advances, 2018, 4, eaau9245.

  33. C. Luo, E. Hu, K. J. Gaskell, X. Fan, T. Gao, C. Cui, S. Ghose, X-Q. Yang, C. Wang, A Chemically Stabilized Sulfur Cathode for Lean Electrolyte Lithium Sulfur Batteries. Proceedings of the National Academy of Sciences, 2020, 117, 14712- 14720.

  34. C. Luo, O. Borodin X. Ji, S. Hou, K.J. Gaskell, X. Fan, J. Chen, T. Deng, R. Wang, J. Jiang, C. Wang, Azo compounds as a family of organic electrode materials for alkali-ion batteries, Proceedings of the National Academy of Sciences, 2018, 115, 2004-2009.

  35. C. Yang, L. Suo, O. Borodin, F. Wang, W. Sun, T. Gao, X. Fan, S. Hou, Z. Ma, K.l Amine, K. Xu, and C. Wang, Unique Aqueous Li-ion/Sulfur Chemistry with High Energy Density, Proceedings of the National Academy of Sciences, 2017,114, 6197–6202.

To view a complete list of Professor Wang's publications, citation metrics, and H-Index, please consult his entry on ResearcherID.

Maryland Engineering Graduate Programs: Top 10 Public, Four Years in a Row

Maryland Engineering earns a top spot in the 2023 U.S. News & World Report Best Graduate Schools rankings among over 200 colleges.

Batteries that function in the iciest conditions

CREB held its 2021 fall meeting to discuss battery chemistry designed for super-cold environments.

Nine Maryland Engineers Recognized as Being "One in 1,000"

Clark School researchers among the "who's who" of influential researchers, according to Clarivate.

Expanded Wood Fiber for High-Performance Solid-State Paper Batteries

UMD research group invented the first high-performance solid-state paper batteries by a new molecular scale engineering method.

Clark School Innovators Honored with Invention of the Year Award Nominations

Among the nine 2021 Invention of the Year nominees, four are led by or include Clark School researchers.

Maryland Graduate Engineering Ranked #10 Public in the Nation

From extreme batteries to windows made from wood, Clark School’s trendsetting work ranks it among the country’s Top 10 public engineering schools for the 3rd consecutive year.

CREB Kicks Off 2021 with Meeting to Discuss Future of Battery Research

The virtual meeting aimed to bolster battery technology under extreme conditions.

2020 Dean's Doctoral Student Research Awards

The competition recognizes distinguished graduate student researchers in order to help propel their careers and demonstrate the value of high-quality engineering research.

MEI² Scientists Named Highly Cited Researchers in 2019

Hu and Wang identified by Web of Science

Organic Processes Inspire Technological Innovation

ChBE researchers develop self-healing battery chemistry.

UMD Researchers Offer Solution to Volatile Battery Chemistry in Electronics

4.0V Water-Based Li-ion Batteries Achieved by ChBE Professor Chunsheng Wang's Research Group

MSE Researchers Publish Series Study on All-Solid-State Batteries

Yifei Mo and team seek to improve all-solid-state Li-ion batteries.

UMD & Army Researchers Discover Salty Solution to Better, Safer Batteries

Greatest potential uses seen in safety-critical, automotive and grid-storage applications

University of Maryland Researchers Accept NASA Mission: Build a Better Battery for Space Exploration

UMD researchers awarded NASA funding for advanced energy storage technology

High Energy at Extreme Battery Center’s First Meeting

New research center expands scope and draws regional experts.

UMERC Researchers Came Out in Force at the ARPA-E Summit

UMERC Faculty promoted their transformative energy research last week at the ARPA-E Energy Innovation Summit

UMERC's Advanced Energy Storage Technology Selected by NASA

Energy storage research at UMERC has been selected by NASA to potentially power future space missions.

Department of Energy renews NEES EFRC for four years

The center develops highly ordered nanostructures that offer a unique way of looking at the science of energy storage.

Room To Move: Spacing Graphite Layers Makes a Better Battery Anode

New process designed to make Na-ion batteries an effective alternative to Li-ion.

UMD Researchers Awarded Two ARPA-E Grants for Electric Vehicle Energy Storage Systems

Eric Wachsman and Chunsheng Wang receive funding to create innovative batteries for electric vehicle energy storage systems.

Karki Wins Best Poster, Best Oral Presentation Awards

Grad student awarded top honors at Nanostructures for Electrical Energy Storage meeting.

Bad Virus Put to Good Use: Breakthrough Batteries

Virally structured nano-electrodes boost energy capacity tenfold.

Gerasopoulos Wins Best Poster Award at Micro/Nano Alliance Symposium

Student presents work on microfabricated energy storage devices made with biological templates.

New Battery Research Highlighted by Discovery News, Nanowerk

Viruses used as structural template for lithium ion battery components.

Cumings Leads EFRC Nanowire Team

Research designed to increase effectiveness of lithium ion batteries.

NanoCenter Improves Energy Storage Options

Maryland NanoCenter researchers create new device to store electrical energy.