Undergraduate Courses in Materials Science and Engineering

PDF iconENMA150: Materials of Civilization (3)

Course Description: The basic structure and properties of materials at an introductory level will be presented and connections will be drawn to show how many of the major advances in throughout history have been preceded by advances in materials. This course fulfills a general education requirement.

ENMA 165: Introduction to Programming with Python (3 credits)

Course Description: Introduces concepts of computer programming using Python from the point-of-view of engineers and scientists (as opposed to computer science). Students will learn the fundamentals of writing and implementing code, and be exposed to practical aspects of programming as may be relevant to their studies and careers in the materials field. Topics/activities of note include data management and analysis, laboratory-related scripting, simple automation, and introduction to computational material concepts.

PDF iconENMA 180: Materials Science and Engineering: The Field and the Future(1)

Course Description:  Overview of the profession and the components of the Materials Science and Engineering program. Students will become familiar with the departmental faculty, areas of specialization witin MSE, professional society student chapter, research opportunities and other resources available to students.

ENMA 201: Bigger, Faster, Better: The Quest for Absolute Technology

Course Description:  The goal of the course is to familiarize the students with applied science and engineering concepts necessary to understand technological advances, breakthroughs and world-leading achievements that have shaped our present lives and will impact our future. The political, economic, and personal driving forces behind selected technological transformations, societal contexts, and conflicts that are inherent in unsustainable technology will also be covered. This course fulfills a general education requirement.

PDF iconENMA 300: Introduction to Materials Engineering (3)

Course Description: Structure of materials, chemical composition, phase transformations, corrosion and mechanical properties of metals, ceramics, polymers and related materials. Electrical, thermal, magnetic and optical properties of materials. Materials selection in engineering applications. Prerequisites: ENES100, Corequisites: MATH241

Microsoft Office document iconENMA 301: Materials for Emerging Technologies (3)

Course Description: This course will be presented as five topical areas, each leading up to specific applications that have recently come to market or are currently experiencing heavy research and development. The goal of each module will be to introduce the basic materials science principles necessary to understand these new areas. Prerequisites: ENMA180, ENMA300

PDF iconENMA 312: Experimental Methods in Materials Science (3)

Course Description: Introduction to experimental methods in materials characterization; synthesis of colloidal nanoparticles; X-ray diffraction and light scattering; optical microscopy; thermal conductivity and expansion; electrical measurements; heat capacity; computational materials design. Prerequisites: ENMA300, Corequisites: ENMA460

PDF iconENMA 362 : Mechanical Properties (3)

Course Description: Overview of Mechanical Behavior, Elastic Behavior, Dislocations, Plastic Deformation, Strengthening of Crystalline Materials, Composite Materials, High Temperature Deformation of Crystalline Materials, Permanent Deformation of Noncrystalline Materials, Tensile Fracture at Low Temperatures, Engineering Aspects of Fracture, High Temperature Fracture, Fatigue, Embrittlement, and Experimental determination of Mechanical Properties including Hardness of Metals and Strength of Metals, Polymers, Ceramics and Composites. Prerequisites: ENMA300

PDF iconENMA 400: Introduction to Atomistic Modeling in Materials Science (3)

Course Description: This is an introductory course designed to study atomistic modeling and simulation techniques used in materials research. This course covers the theories, methods, and applications of atomistic-scale modeling techniques in simulating, understanding, and predicting the properties of materials. Specific topics include: molecular statics using empirical force fields; quantum mechanical methods including density functional theory; molecular dynamics simulations; and Monte Carlo and kinetic Monte Carlo Modeling. Prerequisites: ENMA300, MATH206, ENMA460.

ENMA 401: Continuum Modeling of Materials (3)

Course Description:  Introduces continuum modeling techniques in materials science and engineering.  This course covers and emphasizes the applications of continuum modeling techniques using COMSOL software package in simulating a range of materials phenomena and properties. Specific topics of continuum modeling include: The construction and analyses of continuum models using COMSOL software package; Structural mechanics; Heat transfer; Electrical current; Chemical species transport; Fluid flow; Multi-physics models coupling above phenomena.

Microsoft Office document iconENMA 410: Materials for Energy I (3)

Course Description: The goal of Materials for Energy is to demonstrate the role of materials in solving one of the most critical socio-economic issues of our time, affordable and sustainable energy. Materials for Energy is a two-part course based on material functionality; however, they are independent and neither is a prerequisite for the other. Materials for Energy I will start with a discussion of U.S. and global energy and related environmental issues. Topics to be covered include: fuel cells and batteries (electrochemical energy conversion and storage); catalysts and membrane separations (fossil fuel and biomass energy conversion); and nuclear fuels. Prerequisites: ENMA300 (min. grade of C-)

Microsoft Office document iconENMA 411  Materials for Energy II (3)

Course Description: The goal of Materials for Energy is to demonstrate the role of materials in solving one of the most critical socio-economic issues of our time, affordable and sustainable energy. Materials for Energy is a two-part course based on material functionality; however, they are independent and neither is a prerequisite for the other. Materials for Energy II will focus on electrical, optical, thermal, and mechanically functional materials for energy devices. Solar cells, solar fuel, solar thermal, energy efficient lighting, building energy, thermoelectric and wind energy will be covered. Prerequisites: ENMA300 (min. grade of C-)

FileENMA 414 : Introduction to Solid State Ionics (3)

Course Description: Solid State Ionics is the study of point defects in crystalline and non-crystalline solids; defect equilibria and transport; the influence of chemical and electric potentials, interfaces, and association; and the application of ionically conducting solids in solid-state electrochemical transducer systems and devices. Prerequisites: ENMA300

ENMA416: Lithium Battery Fundamentals, Safety, and Assembly

Course Description: Focus on the real-world considerations that allow for safe battery implementation into actual products while providing the opportunity to assemble functional battery cells. Fundamental electrochemistry, kinetics, thermodynamics, and material properties and their impact on cell and battery pack design, performance, and safety for lithium chemistry batteries will be explored. The lab will include hands-on experimental and design projects centered on cell design, performance, and the causes and effects of thermal runaway in lithium batteries. Site visits to battery research centers and manufacturers are planned.

ENMA417: Li-Ion Battery Design, Fabrication and Testing

Course Description: Students learn the basics of Li-ion battery fabrication through hands-on manufacturing of Li-ion cells. Students will create cells using different active materials and different electrode loadings, then test their batteries to understand how different electrode designs affect cell performance. Students will gain experience with standard constant current-constant voltage cycling tests, and will also learn about electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and other electrochemical testing methods as time allows. Topical issues related to materials for the battery field will also be discussed.

FileENMA 421: Design of Composites (3)

Course Description: This course covers fundamentals of design, processing and selection of composite materials for structural applications. The topics include a review of all classes of engineering materials, an in-depth analysis of micro and macro mechanical behavior including interactions at the two-phase interfaces, modeling of composite morphologies for optimal microstructures, material aspects, cost considerations, processing methods including consideration of chemical reactions and stability of the interfaces and material selection considerations.

FileENMA 421 S20.docx

FileENMA 422 : Radiation Effects (3)

Course Description: Ionizing radiation, radiation dosimetry and sensors, radiation processing, radiation effects on polymers, metals, semiconductors, liquids, and gases. Radiation in advanced manufacturing, radiation-physical technology. Prerequisites: ENMA300

PDF iconENMA 425: Introduction to Biomaterials (3)

Course Description: Examination of materials used in humans and other biological systems in terms of the relationships between structure, fundamental properties and functional behavior. Replacement materials such as implants, assistive devices such as insulin pumps and pacemakers, drug delivery systems, biosensors, engineered materials such as artificial skin and bone growth scaffolds, and biocompatibility will be covered. Prerequisites: ENMA300 recommended

PDF iconENMA 426 : Reliability of Materials (3)

Course Description: The main objective of the course is to understand the basic degradation mechanisms of materials, devices and components through the understanding of the physics, chemistry, mechanics of such mechanisms.  Mechanical failures are introduced through understanding fatigue, creep and yielding in materials, and devices.   Physical or chemical related failures are introduced through a basic understanding of physical mechanisms such as diffusion, electromigration, defects and defect migration, surface trapping mechanisms, charge creation and migration.  Failure mechanisms observed in engineering materials will also be presented as well as failure mechanisms in semiconductor devices.

ENMA434: Quantum Mechanics for Engineers

Course Description: The purpose of this course is to provide engineering students with a foundational understanding of quantum mechanics and its practical applications in the field of materials science. This course will equip students with the essential knowledge and skills required to harness the principles of quantum mechanics in their pursuit of innovative solutions in materials science and engineering.

ENMA 435: Wide Bandgap Materials and Devices (3)

Course Description: Presents the materials science of wide bandgap materials and analyzes the defects present in such materials from a device performance point of view.

ENMA 436: Introduction to Quantum Materials and Devices (3)

Course Description: Quantum materials and devices are an emerging field in materials engineering and physics which offer new approaches to electronics and photonics. This course serves as an introduction to quantum materials and their applications in quantum technologies. It will teach concepts needed to understand the quantum mechanical properties of materials and connect their fundamental properties to quantum device applications. Topics will include low-dimensional materials, strongly correlated electron systems, topology in solids, and light-matter interactions.

ENMA 437: Machine Learning for Materials Science (3)

Course Description: Familiarizes students with basic as well as state of the art knowledge of machine learning and its applications to materials science and engineering. Covers the range of machine learning topics with applications including feature identification and extraction, determining predictive descriptors, uncertainty analysis, and identifying the most informative experiment to perform next. One focus of the class is to build the skills necessary for developing an autonomous materials research system, where machine learning controls experiment design, execution, and analysis in a closed-loop.

PDF iconENMA 440: Plasma Processing of Materials (3)

Course Description: A plasma is an electrified gas consisting of electrons, ions and neutrals. Plasmas have become indispensable for advanced materials processing. This is due to the ability to control the micro-and Nanoscale structure of materials at low synthesis temperatures, and also produce micro-and Nanoscale patterns in materials by plasma etching techniques. This course covers sustaining mechanisms of plasmas, especially low-pressure electrical gas discharges, fundamental plasma physics, sheath formation, electric and magnetic field effects, plasma-surface interactions in chemically reactive systems, plasma diagnostic techniques and selected industrial applications of low pressure plasmas. These topics will be illustrated by presenting examples of current research and important technological applications. 

PDF iconENMA 441 : Characterization of Materials (3)

Course Description: Techniques to characterize the properties of materials whose characteristic dimensions range from nanometers to macroscopic.  These include conventional crystalline and noncrystalline materials, with a special attention to materials of current technological interest. The course will include recent results from the scientific literature. Prerequisites: ENMA300

FileENMA 443: Introduction to Photonic Materials, Devices and Reliability (3)

Course Description: The course focuses on the understanding of the basic optical processes in semiconductors, dielectrics and organic materials. The application of such materials in systems composed of waveguides, light emitting diodes and lasers, as well as modulators is developed.

PDF iconENMA 445 : Liquid Crystals and Other Monomeric Soft Matter Materials (3)

Course Description: Liquid crystals and their applications, role in biology, and nanometer structure. Prerequisites: MATH246, PHYS270, PHYS271

PDF iconENMA 460: Physics of Solid Materials (3)

Course Description: Classes of materials; introduction to the behavior ideal and real material, including mechanical, electrical, thermal, magnetic and optical responses of materials; importance of microstructure in behavior. One application of each property will be discussed in detail. Prerequisites: PHYS270, PHYS271, MATH241

PDF iconENMA 461: Thermodynamics of Materials (3)

Course Description: Thermodynamics of Materials is a basic theoretical material science and engineering course. It is devoted to analysis of fundamental material properties and processes for near equilibrium conditions. Prerequisites: ENMA300

FileENMA 463 : Macroprocessing (3)

Course Description: Processing of modern, bulk engineering materials. Raw materials, forming, firing, finishing, and joining. More emphasis on metals and ceramics than polymers. Prerequisites: ENMA300 

FileENMA 464: Environmental Effects on Engineering Materials (3)

Course Description: Introduction to the phenomena associated with the resistance of materials to damage under severe environmental conditions. Oxidation, corrosion, stress corrosion, corrosion fatigue and radiation damage are examined from the point of view of mechanism and influence on the properties of materials. Methods of corrosion protection and criteria for selection of materials for use in radiation environments. Prerequisites: ENMA300 

FileENMA 465:  Microprocessing of Materials (3)

Course Description: The course provides an overview of the microprocessing - and indeed nanoprocessing - of materials as used in the fabrication of ultrathin layers and structures of materials for use in semiconductors and other devices based on thin film fabrication. Prerequisites: ENMA300

FileENMA 466: Advanced Materials Fabrication Laboratory (3)

Course Description: This course allows students an opportunity to study advanced materials systems in depth through a combination of lectures and hands-on laboratory experiments. Students will be trained in materials processing and characterization techniques. Each student will fabricate materials and devices in our state-of-the-art nanofabrication clean room facility (FabLab) KIM 2304, as well as evaluate them using a variety of characterization techniques. Prerequisites: ENMA465

PDF iconENMA 470 : Materials Selection in Engineering Design (3)

Course Description: Course will examine important engineering factors that influence materials selection: design control parameters, classes of materials properties, lifetime and life cycle factors, selection for performance, degradation considerations, recyclability and carbon footprint, repairability. Based on Ashby Materials Maps and software. Lots of design examples and mini projects. Metals, polymers, ceramics, composites, coatings and natural materials will be covered. Prerequisites: ENMA300

Microsoft Office document iconENMA 471: Kinetics, Diffusion and Phase Transformations (3)

Course Description: Fundamentals of diffusion, kinetics of reaction including nucleation, growth and phase transformations are discussed. Topics include diffusion in substitutional solid solutions, interstitial diffusion, nucleation and growth theories, solidification, diffusional transformations and growth of crystalline solids. Prerequisites: ENMA461

PDF iconENMA 472 : Additive Manufacturing of Materials (3)

Course Description: Additive manufacturing approaches for metals, ceramics and polymers will be explored in terms of manufacturability and how processing parameters affect microstructures and properties. The course will include projects, such as a Terrapin Works project to design and build a part, to develop an understanding of the current state of additive manufacturing, its promises and its limitations. Prerequisites: ENMA300

ENMA 473: High Strength Metals (3)

Course Description: At the conclusion of this class, students will be equipped with the knowledge base that will enable them to start the process of selecting, applying and trouble shooting high performance alloys in engineering applications. This course will bring together what students have learned in thermodynamics, mechanical properties and other courses and apply it to a specific subset of engineering problems. "Strong" alloys in the case of this class are those that typically have properties set by heat treatments or via specialized alloying, and require care in processing.

PDF iconENMA 475: Diffraction Techniques in Materials Science (3)

Course Description: Introduction to diffraction from materials due to their structure or lack thereof. Prerequisites: MATH246, PHYS270, PHYS271

Microsoft Office document iconENMA 476 : NanoManufacturing: Materials Design and Systems Integration (3)

Course DescriptionThe fundamentals of nanomanufacturing based on state-of-the-art and future prospects in materials design and systems integration. The course examines functional nanomaterials design and synthesis, structural assembly from nanoscale to macroscale, and device fabrication. Distinct from the current curricular paradigm in many nanotechnology programs that focus on underlying science, this course emphasizes the immediate need for scale-up, process robustness, and system integration issues. Featuring case studies from industry, end of chapter problems, and study questions, the course is for upper-level undergraduate and graduate students, who are interested in the future of manufacturing innovation and technology.

Microsoft Office document iconENMA 481: Introduction to Electronic and Optical Materials (3)

Course Description: The goal of the course is to familiarize the students with basic as well as state of the art knowledge of some technologically relevant topics in materials engineering and applied physics. The topics include dielectric/ferroelectric materials, magnetic materials, superconductors, and optical materials. There will be an underlying emphasis on thin film and device fabrication technology. Lectures will be on fundamental physical properties and description of different materials as well as new developments in the fields. Prerequisites: ENMA300 (or course w/ comparable content)

Microsoft Office document iconENMA 486: Seminar in Materials Science and Engineering (1)

Course Description: A brief revifor Current research in Materials Science and Engineering and related fields. The lectures are presented by scientists and enginners from academia, national laboratory, US government, etc., in the format of seminars.

Microsoft Office document iconENMA 487Capstone Preparation (1)

Course Description: Preparation for senior level design course. Students will do background research and develop white papers from which teams will form around short listed design projects, a full proposal and a preliminary design. The projects should focus on a society, industry, military or technological based problem in Materials Science Engineering leading to a design and strategy to address the problem in the following course, ENMA 490. The format will be partly online, but will combine teamwork sessions and team/instructor meetings - there will be 5 in-class meetings. Prerequisites: Senior standing

PDF iconENMA 489C: Electrochemical Energy Engineering

Cross-listed as CHBE 473.
Course Description: The lecture will start from the basic electrochemical thermodynamics and kinetics, with emphasis on electrochemical techniques, fundamental principle and performance of batteries, and supercapacitors. 

Microsoft Office document iconENMA 490: Materials Design—Capstone Design Course (3)
(Overview and Sample Projects)

Course Description: Capstone senior level design course. Students will work in teams to evaluate a society or industry based problem in Materials Science and Engineering and then design and evaluate a strategy to address the problem. The course will include written and oral presentations of the design strategy, implementation and evaluation. Prerequisites: Senior standing

PDF iconENMA 495: Polymeric Engineering Materials (3)

Course Description: The elements of the polymer chemistry and industrial polymerization, polymer structures and physics, thermodynamics of polymer solutions, polymer processing methods, and engineering applications of polymers. Prerequisites: ENMA300 

FileENMA 496: Processing and Engineering of Polymers (3)

Course Description: A comprehensive analysis of processing and engineering techniques for the conversion of polymeric materials into useful productss.  Evaluation of the performance of polymer processes, design of polymer processing equipment, effect of processing on the structure and the properties of polymeric materials. Prerequisites: ENMA300

FileENMA 499: Laboratory Project (3)

Course Description: Students work with a faculty member on an individual laboratory project in one or more of the areas of engineering materials. Students will design and carry out experiments, interpret data and prepare a comprehensive laboratory.